MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftf Structured version   Visualization version   Unicode version

Theorem fliftf 6565
Description: The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftf  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftf
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  Fun  F )
2 flift.1 . . . . . . . . . . 11  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
3 flift.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
4 flift.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
52, 3, 4fliftel 6559 . . . . . . . . . 10  |-  ( ph  ->  ( y F z  <->  E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
65exbidv 1850 . . . . . . . . 9  |-  ( ph  ->  ( E. z  y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
76adantr 481 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
8 rexcom4 3225 . . . . . . . . 9  |-  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) )
9 elisset 3215 . . . . . . . . . . . . . 14  |-  ( B  e.  S  ->  E. z 
z  =  B )
104, 9syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  E. z 
z  =  B )
1110biantrud 528 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  (
y  =  A  <->  ( y  =  A  /\  E. z 
z  =  B ) ) )
12 19.42v 1918 . . . . . . . . . . . 12  |-  ( E. z ( y  =  A  /\  z  =  B )  <->  ( y  =  A  /\  E. z 
z  =  B ) )
1311, 12syl6rbbr 279 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( E. z ( y  =  A  /\  z  =  B )  <->  y  =  A ) )
1413rexbidva 3049 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A ) )
1514adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  Fun  F )  ->  ( E. x  e.  X  E. z
( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
168, 15syl5bbr 274 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z E. x  e.  X  ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
177, 16bitrd 268 . . . . . . 7  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. x  e.  X  y  =  A ) )
1817abbidv 2741 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  { y  |  E. z  y F z }  =  {
y  |  E. x  e.  X  y  =  A } )
19 df-dm 5124 . . . . . 6  |-  dom  F  =  { y  |  E. z  y F z }
20 eqid 2622 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
2120rnmpt 5371 . . . . . 6  |-  ran  (
x  e.  X  |->  A )  =  { y  |  E. x  e.  X  y  =  A }
2218, 19, 213eqtr4g 2681 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  dom  F  =  ran  ( x  e.  X  |->  A ) )
23 df-fn 5891 . . . . 5  |-  ( F  Fn  ran  ( x  e.  X  |->  A )  <-> 
( Fun  F  /\  dom  F  =  ran  (
x  e.  X  |->  A ) ) )
241, 22, 23sylanbrc 698 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  F  Fn  ran  ( x  e.  X  |->  A ) )
252, 3, 4fliftrel 6558 . . . . . . 7  |-  ( ph  ->  F  C_  ( R  X.  S ) )
2625adantr 481 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  F  C_  ( R  X.  S ) )
27 rnss 5354 . . . . . 6  |-  ( F 
C_  ( R  X.  S )  ->  ran  F 
C_  ran  ( R  X.  S ) )
2826, 27syl 17 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  ran  ( R  X.  S
) )
29 rnxpss 5566 . . . . 5  |-  ran  ( R  X.  S )  C_  S
3028, 29syl6ss 3615 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  S
)
31 df-f 5892 . . . 4  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  <->  ( F  Fn  ran  ( x  e.  X  |->  A )  /\  ran  F 
C_  S ) )
3224, 30, 31sylanbrc 698 . . 3  |-  ( (
ph  /\  Fun  F )  ->  F : ran  ( x  e.  X  |->  A ) --> S )
3332ex 450 . 2  |-  ( ph  ->  ( Fun  F  ->  F : ran  ( x  e.  X  |->  A ) --> S ) )
34 ffun 6048 . 2  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  ->  Fun  F )
3533, 34impbid1 215 1  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913    C_ wss 3574   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  qliftf  7835  cygznlem2a  19916  pi1xfrf  22853  pi1cof  22859
  Copyright terms: Public domain W3C validator