MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cof Structured version   Visualization version   Unicode version

Theorem pi1cof 22859
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi1  A )
pi1co.q  |-  Q  =  ( K  pi1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1cof  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1cof
Dummy variables  s  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
2 fvex 6201 . . . . 5  |-  (  ~=ph  `  J )  e.  _V
3 ecexg 7746 . . . . 5  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ g ] (  ~=ph  `  J )  e.  _V )
42, 3mp1i 13 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ g ] (  ~=ph  `  J
)  e.  _V )
5 pi1co.q . . . . 5  |-  Q  =  ( K  pi1  B )
6 eqid 2622 . . . . 5  |-  ( Base `  Q )  =  (
Base `  Q )
7 pi1co.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
8 cntop2 21045 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
97, 8syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
10 eqid 2622 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 20722 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 208 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
1312adantr 481 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
14 pi1co.b . . . . . . 7  |-  ( ph  ->  ( F `  A
)  =  B )
15 pi1co.j . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 cnf2 21053 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
1715, 12, 7, 16syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  F : X --> U. K
)
18 pi1co.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
1917, 18ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
2014, 19eqeltrrd 2702 . . . . . 6  |-  ( ph  ->  B  e.  U. K
)
2120adantr 481 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  B  e.  U. K )
22 pi1co.p . . . . . . . . 9  |-  P  =  ( J  pi1  A )
23 pi1co.v . . . . . . . . . 10  |-  V  =  ( Base `  P
)
2423a1i 11 . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  P ) )
2522, 15, 18, 24pi1eluni 22842 . . . . . . . 8  |-  ( ph  ->  ( g  e.  U. V 
<->  ( g  e.  ( II  Cn  J )  /\  ( g ` 
0 )  =  A  /\  ( g ` 
1 )  =  A ) ) )
2625biimpa 501 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g  e.  ( II 
Cn  J )  /\  ( g `  0
)  =  A  /\  ( g `  1
)  =  A ) )
2726simp1d 1073 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  g  e.  ( II  Cn  J
) )
287adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
29 cnco 21070 . . . . . 6  |-  ( ( g  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  g
)  e.  ( II 
Cn  K ) )
3027, 28, 29syl2anc 693 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F  o.  g )  e.  ( II  Cn  K
) )
31 iitopon 22682 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
3315adantr 481 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  J  e.  (TopOn `  X )
)
34 cnf2 21053 . . . . . . . 8  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  g  e.  (
II  Cn  J )
)  ->  g :
( 0 [,] 1
) --> X )
3532, 33, 27, 34syl3anc 1326 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  g : ( 0 [,] 1 ) --> X )
36 0elunit 12290 . . . . . . 7  |-  0  e.  ( 0 [,] 1
)
37 fvco3 6275 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  (
g `  0 )
) )
3835, 36, 37sylancl 694 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  ( F `  ( g `  0
) ) )
3926simp2d 1074 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  0 )  =  A )
4039fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  0 ) )  =  ( F `  A ) )
4114adantr 481 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  A )  =  B )
4238, 40, 413eqtrd 2660 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  B )
43 1elunit 12291 . . . . . . 7  |-  1  e.  ( 0 [,] 1
)
44 fvco3 6275 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  (
g `  1 )
) )
4535, 43, 44sylancl 694 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  ( F `  ( g `  1
) ) )
4626simp3d 1075 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  1 )  =  A )
4746fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  1 ) )  =  ( F `  A ) )
4845, 47, 413eqtrd 2660 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  B )
495, 6, 13, 21, 30, 42, 48elpi1i 22846 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  e.  ( Base `  Q ) )
50 eceq1 7782 . . . 4  |-  ( g  =  h  ->  [ g ] (  ~=ph  `  J
)  =  [ h ] (  ~=ph  `  J
) )
51 coeq2 5280 . . . . 5  |-  ( g  =  h  ->  ( F  o.  g )  =  ( F  o.  h ) )
5251eceq1d 7783 . . . 4  |-  ( g  =  h  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  =  [ ( F  o.  h ) ] (  ~=ph  `  K
) )
53 phtpcer 22794 . . . . . 6  |-  (  ~=ph  `  K )  Er  (
II  Cn  K )
5453a1i 11 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  K
)  Er  ( II 
Cn  K ) )
55 simpr3 1069 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ g ] (  ~=ph  `  J )  =  [ h ]
(  ~=ph  `  J )
)
56 phtpcer 22794 . . . . . . . . 9  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
5756a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  J
)  Er  ( II 
Cn  J ) )
58 simpr1 1067 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  U. V )
5925adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e. 
U. V  <->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) ) )
6058, 59mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) )
6160simp1d 1073 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  ( II  Cn  J ) )
6257, 61erth 7791 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g ( 
~=ph  `  J ) h  <->  [ g ] ( 
~=ph  `  J )  =  [ h ] ( 
~=ph  `  J ) ) )
6355, 62mpbird 247 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g (  ~=ph  `  J ) h )
647adantr 481 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  F  e.  ( J  Cn  K ) )
6563, 64phtpcco2 22799 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( F  o.  g ) (  ~=ph  `  K ) ( F  o.  h ) )
6654, 65erthi 7793 . . . 4  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
671, 4, 49, 50, 52, 66fliftfund 6563 . . 3  |-  ( ph  ->  Fun  G )
681, 4, 49fliftf 6565 . . 3  |-  ( ph  ->  ( Fun  G  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> ( Base `  Q
) ) )
6967, 68mpbid 222 . 2  |-  ( ph  ->  G : ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) --> ( Base `  Q
) )
7022, 15, 18, 24pi1bas2 22841 . . . 4  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
71 df-qs 7748 . . . . 5  |-  ( U. V /. (  ~=ph  `  J
) )  =  {
s  |  E. g  e.  U. V s  =  [ g ] ( 
~=ph  `  J ) }
72 eqid 2622 . . . . . 6  |-  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )  =  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7372rnmpt 5371 . . . . 5  |-  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) )  =  { s  |  E. g  e.  U. V s  =  [
g ] (  ~=ph  `  J ) }
7471, 73eqtr4i 2647 . . . 4  |-  ( U. V /. (  ~=ph  `  J
) )  =  ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7570, 74syl6eq 2672 . . 3  |-  ( ph  ->  V  =  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) )
7675feq2d 6031 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> (
Base `  Q )
) )
7769, 76mpbird 247 1  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650    Er wer 7739   [cec 7740   /.cqs 7741   0cc0 9936   1c1 9937   [,]cicc 12178   Basecbs 15857   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   IIcii 22678    ~=ph cphtpc 22768    pi1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-om1 22806  df-pi1 22808
This theorem is referenced by:  pi1coval  22860  pi1coghm  22861
  Copyright terms: Public domain W3C validator