MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmeng Structured version   Visualization version   Unicode version

Theorem fndmeng 8034
Description: A function is equinumerate to its domain. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
fndmeng  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )

Proof of Theorem fndmeng
StepHypRef Expression
1 fnex 6481 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  F  e.  _V )
2 fnfun 5988 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
32adantr 481 . . 3  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  Fun  F )
4 fundmeng 8031 . . 3  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
51, 3, 4syl2anc 693 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  dom  F  ~~  F
)
6 fndm 5990 . . . 4  |-  ( F  Fn  A  ->  dom  F  =  A )
76breq1d 4663 . . 3  |-  ( F  Fn  A  ->  ( dom  F  ~~  F  <->  A  ~~  F ) )
87adantr 481 . 2  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  ( dom  F  ~~  F 
<->  A  ~~  F ) )
95, 8mpbid 222 1  |-  ( ( F  Fn  A  /\  A  e.  C )  ->  A  ~~  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   dom cdm 5114   Fun wfun 5882    Fn wfn 5883    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-en 7956
This theorem is referenced by:  tskcard  9603  hashfn  13164
  Copyright terms: Public domain W3C validator