MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskcard Structured version   Visualization version   Unicode version

Theorem tskcard 9603
Description: An even more direct relationship than r1tskina 9604 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
tskcard  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  e. 
Inacc )

Proof of Theorem tskcard
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardeq0 9374 . . . 4  |-  ( T  e.  Tarski  ->  ( ( card `  T )  =  (/)  <->  T  =  (/) ) )
21necon3bid 2838 . . 3  |-  ( T  e.  Tarski  ->  ( ( card `  T )  =/=  (/)  <->  T  =/=  (/) ) )
32biimpar 502 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  =/=  (/) )
4 eqid 2622 . . . . . 6  |-  ( z  e.  ( cf `  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )  |->  (har `  ( w `  z
) ) )  =  ( z  e.  ( cf `  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) )  |->  (har `  (
w `  z )
) )
54pwcfsdom 9405 . . . . 5  |-  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) 
~<  ( ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } ) ) )
6 vpwex 4849 . . . . . . . . . . . 12  |-  ~P x  e.  _V
76canth2 8113 . . . . . . . . . . 11  |-  ~P x  ~<  ~P ~P x
8 simpl 473 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  T  e.  Tarski )
9 cardon 8770 . . . . . . . . . . . . . . . . 17  |-  ( card `  T )  e.  On
109oneli 5835 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( card `  T
)  ->  x  e.  On )
1110adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  e.  On )
12 cardsdomelir 8799 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( card `  T
)  ->  x  ~<  T )
1312adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  ~<  T )
14 tskord 9602 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  On  /\  x  ~<  T )  ->  x  e.  T )
158, 11, 13, 14syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  e.  T )
16 tskpw 9575 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P x  e.  T )
17 tskpwss 9574 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  ~P x  e.  T )  ->  ~P ~P x  C_  T )
1816, 17syldan 487 . . . . . . . . . . . . . 14  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P ~P x  C_  T )
1915, 18syldan 487 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  C_  T )
20 ssdomg 8001 . . . . . . . . . . . . 13  |-  ( T  e.  Tarski  ->  ( ~P ~P x  C_  T  ->  ~P ~P x  ~<_  T )
)
218, 19, 20sylc 65 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  ~<_  T )
22 cardidg 9370 . . . . . . . . . . . . . 14  |-  ( T  e.  Tarski  ->  ( card `  T
)  ~~  T )
2322ensymd 8007 . . . . . . . . . . . . 13  |-  ( T  e.  Tarski  ->  T  ~~  ( card `  T ) )
2423adantr 481 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  T  ~~  ( card `  T
) )
25 domentr 8015 . . . . . . . . . . . 12  |-  ( ( ~P ~P x  ~<_  T  /\  T  ~~  ( card `  T ) )  ->  ~P ~P x  ~<_  ( card `  T )
)
2621, 24, 25syl2anc 693 . . . . . . . . . . 11  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  ~<_  ( card `  T ) )
27 sdomdomtr 8093 . . . . . . . . . . 11  |-  ( ( ~P x  ~<  ~P ~P x  /\  ~P ~P x  ~<_  ( card `  T )
)  ->  ~P x  ~<  ( card `  T
) )
287, 26, 27sylancr 695 . . . . . . . . . 10  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P x  ~<  ( card `  T
) )
2928ralrimiva 2966 . . . . . . . . 9  |-  ( T  e.  Tarski  ->  A. x  e.  (
card `  T ) ~P x  ~<  ( card `  T ) )
3029adantr 481 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  A. x  e.  ( card `  T
) ~P x  ~<  (
card `  T )
)
31 inawinalem 9511 . . . . . . . . . 10  |-  ( (
card `  T )  e.  On  ->  ( A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
)  ->  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
) )
329, 31ax-mp 5 . . . . . . . . 9  |-  ( A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
)  ->  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
)
33 winainflem 9515 . . . . . . . . . 10  |-  ( ( ( card `  T
)  =/=  (/)  /\  ( card `  T )  e.  On  /\  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
)  ->  om  C_  ( card `  T ) )
349, 33mp3an2 1412 . . . . . . . . 9  |-  ( ( ( card `  T
)  =/=  (/)  /\  A. x  e.  ( card `  T ) E. y  e.  ( card `  T
) x  ~<  y
)  ->  om  C_  ( card `  T ) )
3532, 34sylan2 491 . . . . . . . 8  |-  ( ( ( card `  T
)  =/=  (/)  /\  A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
) )  ->  om  C_  ( card `  T ) )
363, 30, 35syl2anc 693 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  om  C_  ( card `  T ) )
37 cardidm 8785 . . . . . . 7  |-  ( card `  ( card `  T
) )  =  (
card `  T )
38 cardaleph 8912 . . . . . . 7  |-  ( ( om  C_  ( card `  T )  /\  ( card `  ( card `  T
) )  =  (
card `  T )
)  ->  ( card `  T )  =  (
aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )
3936, 37, 38sylancl 694 . . . . . 6  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  =  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )
4039fveq2d 6195 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( cf `  ( card `  T
) )  =  ( cf `  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) ) )
4139, 40oveq12d 6668 . . . . . 6  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) )  =  ( (
aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) ) ) )
4239, 41breq12d 4666 . . . . 5  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( card `  T )  ~<  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  <->  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) 
~<  ( ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } ) ) ) ) )
435, 42mpbiri 248 . . . 4  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
44 simp1 1061 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  T  e.  Tarski )
45 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  e.  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
46 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( card `  T )  e.  _V
47 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( cf `  ( card `  T
) )  e.  _V
4846, 47elmap 7886 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  <->  x :
( cf `  ( card `  T ) ) --> ( card `  T
) )
49 fssxp 6060 . . . . . . . . . . . . . . 15  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  x  C_  (
( cf `  ( card `  T ) )  X.  ( card `  T
) ) )
5048, 49sylbi 207 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ->  x  C_  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) ) )
5115ex 450 . . . . . . . . . . . . . . . 16  |-  ( T  e.  Tarski  ->  ( x  e.  ( card `  T
)  ->  x  e.  T ) )
5251ssrdv 3609 . . . . . . . . . . . . . . 15  |-  ( T  e.  Tarski  ->  ( card `  T
)  C_  T )
53 cfle 9076 . . . . . . . . . . . . . . . . 17  |-  ( cf `  ( card `  T
) )  C_  ( card `  T )
54 sstr 3611 . . . . . . . . . . . . . . . . 17  |-  ( ( ( cf `  ( card `  T ) ) 
C_  ( card `  T
)  /\  ( card `  T )  C_  T
)  ->  ( cf `  ( card `  T
) )  C_  T
)
5553, 54mpan 706 . . . . . . . . . . . . . . . 16  |-  ( (
card `  T )  C_  T  ->  ( cf `  ( card `  T
) )  C_  T
)
56 tskxpss 9594 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  C_  T  /\  ( card `  T
)  C_  T )  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
)
57563exp 1264 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  C_  T  ->  ( ( card `  T
)  C_  T  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) ) )
5857com23 86 . . . . . . . . . . . . . . . 16  |-  ( T  e.  Tarski  ->  ( ( card `  T )  C_  T  ->  ( ( cf `  ( card `  T ) ) 
C_  T  ->  (
( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) ) )
5955, 58mpdi 45 . . . . . . . . . . . . . . 15  |-  ( T  e.  Tarski  ->  ( ( card `  T )  C_  T  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) )
6052, 59mpd 15 . . . . . . . . . . . . . 14  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) ) 
C_  T )
61 sstr2 3610 . . . . . . . . . . . . . 14  |-  ( x 
C_  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) )  ->  ( ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T  ->  x  C_  T )
)
6250, 60, 61syl2im 40 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  -> 
( T  e.  Tarski  ->  x  C_  T ) )
6345, 44, 62sylc 65 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  C_  T )
64 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  ( cf `  ( card `  T
) )  e.  (
card `  T )
)
65 ffn 6045 . . . . . . . . . . . . . . . . 17  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  x  Fn  ( cf `  ( card `  T ) ) )
66 fndmeng 8034 . . . . . . . . . . . . . . . . 17  |-  ( ( x  Fn  ( cf `  ( card `  T
) )  /\  ( cf `  ( card `  T
) )  e.  _V )  ->  ( cf `  ( card `  T ) ) 
~~  x )
6765, 47, 66sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  ( cf `  ( card `  T
) )  ~~  x
)
6848, 67sylbi 207 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  -> 
( cf `  ( card `  T ) ) 
~~  x )
6968ensymd 8007 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ->  x  ~~  ( cf `  ( card `  T ) ) )
70 cardsdomelir 8799 . . . . . . . . . . . . . 14  |-  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  ( cf `  ( card `  T
) )  ~<  T )
71 ensdomtr 8096 . . . . . . . . . . . . . 14  |-  ( ( x  ~~  ( cf `  ( card `  T
) )  /\  ( cf `  ( card `  T
) )  ~<  T )  ->  x  ~<  T )
7269, 70, 71syl2an 494 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( (
card `  T )  ^m  ( cf `  ( card `  T ) ) )  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  x  ~<  T )
7345, 64, 72syl2anc 693 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  ~<  T )
74 tskssel 9579 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  C_  T  /\  x  ~<  T )  ->  x  e.  T )
7544, 63, 73, 74syl3anc 1326 . . . . . . . . . . 11  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  e.  T )
76753expia 1267 . . . . . . . . . 10  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( x  e.  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ->  x  e.  T )
)
7776ssrdv 3609 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) ) 
C_  T )
78 ssdomg 8001 . . . . . . . . . 10  |-  ( T  e.  Tarski  ->  ( ( (
card `  T )  ^m  ( cf `  ( card `  T ) ) )  C_  T  ->  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T ) )
7978imp 445 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) )  C_  T )  ->  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T )
8077, 79syldan 487 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) )  ~<_  T )
8123adantr 481 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  T  ~~  ( card `  T )
)
82 domentr 8015 . . . . . . . 8  |-  ( ( ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T  /\  T  ~~  ( card `  T ) )  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ~<_  (
card `  T )
)
8380, 81, 82syl2anc 693 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) )  ~<_  ( card `  T
) )
84 domnsym 8086 . . . . . . 7  |-  ( ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  (
card `  T )  ->  -.  ( card `  T
)  ~<  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) ) )
8583, 84syl 17 . . . . . 6  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  -.  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
8685ex 450 . . . . 5  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  e.  (
card `  T )  ->  -.  ( card `  T
)  ~<  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) ) ) )
8786adantr 481 . . . 4  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  -.  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) ) )
8843, 87mt2d 131 . . 3  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  -.  ( cf `  ( card `  T ) )  e.  ( card `  T
) )
89 cfon 9077 . . . . . 6  |-  ( cf `  ( card `  T
) )  e.  On
9089, 9onsseli 5842 . . . . 5  |-  ( ( cf `  ( card `  T ) )  C_  ( card `  T )  <->  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  \/  ( cf `  ( card `  T
) )  =  (
card `  T )
) )
9153, 90mpbi 220 . . . 4  |-  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  \/  ( cf `  ( card `  T
) )  =  (
card `  T )
)
9291ori 390 . . 3  |-  ( -.  ( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  ( cf `  ( card `  T
) )  =  (
card `  T )
)
9388, 92syl 17 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( cf `  ( card `  T
) )  =  (
card `  T )
)
94 elina 9509 . 2  |-  ( (
card `  T )  e.  Inacc 
<->  ( ( card `  T
)  =/=  (/)  /\  ( cf `  ( card `  T
) )  =  (
card `  T )  /\  A. x  e.  (
card `  T ) ~P x  ~<  ( card `  T ) ) )
953, 93, 30, 94syl3anbrc 1246 1  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  e. 
Inacc )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   Oncon0 5723    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954  harchar 8461   cardccrd 8761   alephcale 8762   cfccf 8763   Inacccina 9505   Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-r1 8627  df-card 8765  df-aleph 8766  df-cf 8767  df-acn 8768  df-ac 8939  df-ina 9507  df-tsk 9571
This theorem is referenced by:  r1tskina  9604  tskuni  9605  inaprc  9658
  Copyright terms: Public domain W3C validator