MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnen Structured version   Visualization version   Unicode version

Theorem mapsnen 8035
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
mapsnen.1  |-  A  e. 
_V
mapsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsnen  |-  ( A  ^m  { B }
)  ~~  A

Proof of Theorem mapsnen
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . 2  |-  ( A  ^m  { B }
)  e.  _V
2 mapsnen.1 . 2  |-  A  e. 
_V
3 fvexd 6203 . 2  |-  ( z  e.  ( A  ^m  { B } )  -> 
( z `  B
)  e.  _V )
4 snex 4908 . . 3  |-  { <. B ,  w >. }  e.  _V
54a1i 11 . 2  |-  ( w  e.  A  ->  { <. B ,  w >. }  e.  _V )
6 mapsnen.2 . . . . . . 7  |-  B  e. 
_V
72, 6mapsn 7899 . . . . . 6  |-  ( A  ^m  { B }
)  =  { z  |  E. y  e.  A  z  =  { <. B ,  y >. } }
87abeq2i 2735 . . . . 5  |-  ( z  e.  ( A  ^m  { B } )  <->  E. y  e.  A  z  =  { <. B ,  y
>. } )
98anbi1i 731 . . . 4  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
10 r19.41v 3089 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( E. y  e.  A  z  =  { <. B ,  y
>. }  /\  w  =  ( z `  B
) ) )
11 df-rex 2918 . . . 4  |-  ( E. y  e.  A  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
129, 10, 113bitr2i 288 . . 3  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  E. y
( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) ) )
13 fveq1 6190 . . . . . . . . . 10  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  ( { <. B ,  y >. } `  B ) )
14 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
156, 14fvsn 6446 . . . . . . . . . 10  |-  ( {
<. B ,  y >. } `  B )  =  y
1613, 15syl6eq 2672 . . . . . . . . 9  |-  ( z  =  { <. B , 
y >. }  ->  (
z `  B )  =  y )
1716eqeq2d 2632 . . . . . . . 8  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  w  =  y ) )
18 equcom 1945 . . . . . . . 8  |-  ( w  =  y  <->  y  =  w )
1917, 18syl6bb 276 . . . . . . 7  |-  ( z  =  { <. B , 
y >. }  ->  (
w  =  ( z `
 B )  <->  y  =  w ) )
2019pm5.32i 669 . . . . . 6  |-  ( ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) )  <->  ( z  =  { <. B ,  y
>. }  /\  y  =  w ) )
2120anbi2i 730 . . . . 5  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
22 anass 681 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  e.  A  /\  (
z  =  { <. B ,  y >. }  /\  y  =  w )
) )
23 ancom 466 . . . . 5  |-  ( ( ( y  e.  A  /\  z  =  { <. B ,  y >. } )  /\  y  =  w )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
2421, 22, 233bitr2i 288 . . . 4  |-  ( ( y  e.  A  /\  ( z  =  { <. B ,  y >. }  /\  w  =  ( z `  B ) ) )  <->  ( y  =  w  /\  (
y  e.  A  /\  z  =  { <. B , 
y >. } ) ) )
2524exbii 1774 . . 3  |-  ( E. y ( y  e.  A  /\  ( z  =  { <. B , 
y >. }  /\  w  =  ( z `  B ) ) )  <->  E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) ) )
26 vex 3203 . . . 4  |-  w  e. 
_V
27 eleq1 2689 . . . . 5  |-  ( y  =  w  ->  (
y  e.  A  <->  w  e.  A ) )
28 opeq2 4403 . . . . . . 7  |-  ( y  =  w  ->  <. B , 
y >.  =  <. B ,  w >. )
2928sneqd 4189 . . . . . 6  |-  ( y  =  w  ->  { <. B ,  y >. }  =  { <. B ,  w >. } )
3029eqeq2d 2632 . . . . 5  |-  ( y  =  w  ->  (
z  =  { <. B ,  y >. }  <->  z  =  { <. B ,  w >. } ) )
3127, 30anbi12d 747 . . . 4  |-  ( y  =  w  ->  (
( y  e.  A  /\  z  =  { <. B ,  y >. } )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) ) )
3226, 31ceqsexv 3242 . . 3  |-  ( E. y ( y  =  w  /\  ( y  e.  A  /\  z  =  { <. B ,  y
>. } ) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
3312, 25, 323bitri 286 . 2  |-  ( ( z  e.  ( A  ^m  { B }
)  /\  w  =  ( z `  B
) )  <->  ( w  e.  A  /\  z  =  { <. B ,  w >. } ) )
341, 2, 3, 5, 33en2i 7993 1  |-  ( A  ^m  { B }
)  ~~  A
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   {csn 4177   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ~~ cen 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-en 7956
This theorem is referenced by:  map2xp  8130  mapdom3  8132  ackbij1lem5  9046  pwxpndom2  9487  hashmap  13222
  Copyright terms: Public domain W3C validator