| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fness | Structured version Visualization version Unicode version | ||
| Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fness.1 |
|
| fness.2 |
|
| Ref | Expression |
|---|---|
| fness |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. 2
| |
| 2 | ssel2 3598 |
. . . . . . 7
| |
| 3 | 2 | 3adant3 1081 |
. . . . . 6
|
| 4 | simp3 1063 |
. . . . . . 7
| |
| 5 | ssid 3624 |
. . . . . . 7
| |
| 6 | 4, 5 | jctir 561 |
. . . . . 6
|
| 7 | elequ2 2004 |
. . . . . . . 8
| |
| 8 | sseq1 3626 |
. . . . . . . 8
| |
| 9 | 7, 8 | anbi12d 747 |
. . . . . . 7
|
| 10 | 9 | rspcev 3309 |
. . . . . 6
|
| 11 | 3, 6, 10 | syl2anc 693 |
. . . . 5
|
| 12 | 11 | 3expib 1268 |
. . . 4
|
| 13 | 12 | ralrimivv 2970 |
. . 3
|
| 14 | 13 | 3ad2ant2 1083 |
. 2
|
| 15 | fness.1 |
. . . 4
| |
| 16 | fness.2 |
. . . 4
| |
| 17 | 15, 16 | isfne2 32337 |
. . 3
|
| 18 | 17 | 3ad2ant1 1082 |
. 2
|
| 19 | 1, 14, 18 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-fne 32332 |
| This theorem is referenced by: fnessref 32352 refssfne 32353 |
| Copyright terms: Public domain | W3C validator |