Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fness Structured version   Visualization version   Unicode version

Theorem fness 32344
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
Hypotheses
Ref Expression
fness.1  |-  X  = 
U. A
fness.2  |-  Y  = 
U. B
Assertion
Ref Expression
fness  |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y )  ->  A Fne B )

Proof of Theorem fness
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . 2  |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y )  ->  X  =  Y )
2 ssel2 3598 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  A )  ->  x  e.  B )
323adant3 1081 . . . . . 6  |-  ( ( A  C_  B  /\  x  e.  A  /\  y  e.  x )  ->  x  e.  B )
4 simp3 1063 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  A  /\  y  e.  x )  ->  y  e.  x )
5 ssid 3624 . . . . . . 7  |-  x  C_  x
64, 5jctir 561 . . . . . 6  |-  ( ( A  C_  B  /\  x  e.  A  /\  y  e.  x )  ->  ( y  e.  x  /\  x  C_  x ) )
7 elequ2 2004 . . . . . . . 8  |-  ( z  =  x  ->  (
y  e.  z  <->  y  e.  x ) )
8 sseq1 3626 . . . . . . . 8  |-  ( z  =  x  ->  (
z  C_  x  <->  x  C_  x
) )
97, 8anbi12d 747 . . . . . . 7  |-  ( z  =  x  ->  (
( y  e.  z  /\  z  C_  x
)  <->  ( y  e.  x  /\  x  C_  x ) ) )
109rspcev 3309 . . . . . 6  |-  ( ( x  e.  B  /\  ( y  e.  x  /\  x  C_  x ) )  ->  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) )
113, 6, 10syl2anc 693 . . . . 5  |-  ( ( A  C_  B  /\  x  e.  A  /\  y  e.  x )  ->  E. z  e.  B  ( y  e.  z  /\  z  C_  x
) )
12113expib 1268 . . . 4  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  x
)  ->  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
1312ralrimivv 2970 . . 3  |-  ( A 
C_  B  ->  A. x  e.  A  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) )
14133ad2ant2 1083 . 2  |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y )  ->  A. x  e.  A  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) )
15 fness.1 . . . 4  |-  X  = 
U. A
16 fness.2 . . . 4  |-  Y  = 
U. B
1715, 16isfne2 32337 . . 3  |-  ( B  e.  C  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) ) )
18173ad2ant1 1082 . 2  |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y )  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) ) )
191, 14, 18mpbir2and 957 1  |-  ( ( B  e.  C  /\  A  C_  B  /\  X  =  Y )  ->  A Fne B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   class class class wbr 4653   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by:  fnessref  32352  refssfne  32353
  Copyright terms: Public domain W3C validator