| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refssfne | Structured version Visualization version Unicode version | ||
| Description: A cover is a refinement iff it is a subcover of something which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
| Ref | Expression |
|---|---|
| refssfne.1 |
|
| refssfne.2 |
|
| Ref | Expression |
|---|---|
| refssfne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel 21311 |
. . . . . . 7
| |
| 2 | 1 | brrelex2i 5159 |
. . . . . 6
|
| 3 | 2 | adantl 482 |
. . . . 5
|
| 4 | 1 | brrelexi 5158 |
. . . . . 6
|
| 5 | 4 | adantl 482 |
. . . . 5
|
| 6 | unexg 6959 |
. . . . 5
| |
| 7 | 3, 5, 6 | syl2anc 693 |
. . . 4
|
| 8 | ssun2 3777 |
. . . . . 6
| |
| 9 | 8 | a1i 11 |
. . . . 5
|
| 10 | ssun1 3776 |
. . . . . . 7
| |
| 11 | 10 | a1i 11 |
. . . . . 6
|
| 12 | eqimss2 3658 |
. . . . . . . . 9
| |
| 13 | 12 | adantr 481 |
. . . . . . . 8
|
| 14 | ssequn2 3786 |
. . . . . . . 8
| |
| 15 | 13, 14 | sylib 208 |
. . . . . . 7
|
| 16 | 15 | eqcomd 2628 |
. . . . . 6
|
| 17 | refssfne.1 |
. . . . . . 7
| |
| 18 | refssfne.2 |
. . . . . . . . 9
| |
| 19 | 17, 18 | uneq12i 3765 |
. . . . . . . 8
|
| 20 | uniun 4456 |
. . . . . . . 8
| |
| 21 | 19, 20 | eqtr4i 2647 |
. . . . . . 7
|
| 22 | 17, 21 | fness 32344 |
. . . . . 6
|
| 23 | 7, 11, 16, 22 | syl3anc 1326 |
. . . . 5
|
| 24 | elun 3753 |
. . . . . . . 8
| |
| 25 | ssid 3624 |
. . . . . . . . . . 11
| |
| 26 | sseq2 3627 |
. . . . . . . . . . . 12
| |
| 27 | 26 | rspcev 3309 |
. . . . . . . . . . 11
|
| 28 | 25, 27 | mpan2 707 |
. . . . . . . . . 10
|
| 29 | 28 | a1i 11 |
. . . . . . . . 9
|
| 30 | refssex 21314 |
. . . . . . . . . . 11
| |
| 31 | 30 | ex 450 |
. . . . . . . . . 10
|
| 32 | 31 | adantl 482 |
. . . . . . . . 9
|
| 33 | 29, 32 | jaod 395 |
. . . . . . . 8
|
| 34 | 24, 33 | syl5bi 232 |
. . . . . . 7
|
| 35 | 34 | ralrimiv 2965 |
. . . . . 6
|
| 36 | 21, 17 | isref 21312 |
. . . . . . 7
|
| 37 | 7, 36 | syl 17 |
. . . . . 6
|
| 38 | 16, 35, 37 | mpbir2and 957 |
. . . . 5
|
| 39 | 9, 23, 38 | jca32 558 |
. . . 4
|
| 40 | sseq2 3627 |
. . . . . 6
| |
| 41 | breq2 4657 |
. . . . . . 7
| |
| 42 | breq1 4656 |
. . . . . . 7
| |
| 43 | 41, 42 | anbi12d 747 |
. . . . . 6
|
| 44 | 40, 43 | anbi12d 747 |
. . . . 5
|
| 45 | 44 | spcegv 3294 |
. . . 4
|
| 46 | 7, 39, 45 | sylc 65 |
. . 3
|
| 47 | 46 | ex 450 |
. 2
|
| 48 | vex 3203 |
. . . . . . . 8
| |
| 49 | 48 | ssex 4802 |
. . . . . . 7
|
| 50 | 49 | ad2antrl 764 |
. . . . . 6
|
| 51 | simprl 794 |
. . . . . 6
| |
| 52 | simpl 473 |
. . . . . . 7
| |
| 53 | eqid 2622 |
. . . . . . . . . 10
| |
| 54 | 53, 17 | refbas 21313 |
. . . . . . . . 9
|
| 55 | 54 | adantl 482 |
. . . . . . . 8
|
| 56 | 55 | ad2antll 765 |
. . . . . . 7
|
| 57 | 52, 56 | eqtr3d 2658 |
. . . . . 6
|
| 58 | 18, 53 | ssref 21315 |
. . . . . 6
|
| 59 | 50, 51, 57, 58 | syl3anc 1326 |
. . . . 5
|
| 60 | simprrr 805 |
. . . . 5
| |
| 61 | reftr 21317 |
. . . . 5
| |
| 62 | 59, 60, 61 | syl2anc 693 |
. . . 4
|
| 63 | 62 | ex 450 |
. . 3
|
| 64 | 63 | exlimdv 1861 |
. 2
|
| 65 | 47, 64 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-ref 21308 df-fne 32332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |