| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnwech | Structured version Visualization version Unicode version | ||
| Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f |
|
| dnnumch.a |
|
| dnnumch.g |
|
| dnwech.h |
|
| Ref | Expression |
|---|---|
| dnwech |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f |
. . . . 5
| |
| 2 | dnnumch.a |
. . . . 5
| |
| 3 | dnnumch.g |
. . . . 5
| |
| 4 | 1, 2, 3 | dnnumch3 37617 |
. . . 4
|
| 5 | f1f1orn 6148 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | f1f 6101 |
. . . . 5
| |
| 8 | frn 6053 |
. . . . 5
| |
| 9 | 4, 7, 8 | 3syl 18 |
. . . 4
|
| 10 | epweon 6983 |
. . . 4
| |
| 11 | wess 5101 |
. . . 4
| |
| 12 | 9, 10, 11 | mpisyl 21 |
. . 3
|
| 13 | eqid 2622 |
. . . 4
| |
| 14 | 13 | f1owe 6603 |
. . 3
|
| 15 | 6, 12, 14 | sylc 65 |
. 2
|
| 16 | fvex 6201 |
. . . . . . . . 9
| |
| 17 | 16 | epelc 5031 |
. . . . . . . 8
|
| 18 | 1, 2, 3 | dnnumch3lem 37616 |
. . . . . . . . . 10
|
| 19 | 18 | adantrr 753 |
. . . . . . . . 9
|
| 20 | 1, 2, 3 | dnnumch3lem 37616 |
. . . . . . . . . 10
|
| 21 | 20 | adantrl 752 |
. . . . . . . . 9
|
| 22 | 19, 21 | eleq12d 2695 |
. . . . . . . 8
|
| 23 | 17, 22 | syl5rbb 273 |
. . . . . . 7
|
| 24 | 23 | pm5.32da 673 |
. . . . . 6
|
| 25 | 24 | opabbidv 4716 |
. . . . 5
|
| 26 | incom 3805 |
. . . . . 6
| |
| 27 | df-xp 5120 |
. . . . . . 7
| |
| 28 | dnwech.h |
. . . . . . 7
| |
| 29 | 27, 28 | ineq12i 3812 |
. . . . . 6
|
| 30 | inopab 5252 |
. . . . . 6
| |
| 31 | 26, 29, 30 | 3eqtri 2648 |
. . . . 5
|
| 32 | incom 3805 |
. . . . . 6
| |
| 33 | 27 | ineq1i 3810 |
. . . . . 6
|
| 34 | inopab 5252 |
. . . . . 6
| |
| 35 | 32, 33, 34 | 3eqtri 2648 |
. . . . 5
|
| 36 | 25, 31, 35 | 3eqtr4g 2681 |
. . . 4
|
| 37 | weeq1 5102 |
. . . 4
| |
| 38 | 36, 37 | syl 17 |
. . 3
|
| 39 | weinxp 5186 |
. . 3
| |
| 40 | weinxp 5186 |
. . 3
| |
| 41 | 38, 39, 40 | 3bitr4g 303 |
. 2
|
| 42 | 15, 41 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: aomclem3 37626 |
| Copyright terms: Public domain | W3C validator |