| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fr2nr | Structured version Visualization version Unicode version | ||
| Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| fr2nr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 4909 |
. . . . . . 7
| |
| 2 | 1 | a1i 11 |
. . . . . 6
|
| 3 | simpl 473 |
. . . . . 6
| |
| 4 | prssi 4353 |
. . . . . . 7
| |
| 5 | 4 | adantl 482 |
. . . . . 6
|
| 6 | prnzg 4311 |
. . . . . . 7
| |
| 7 | 6 | ad2antrl 764 |
. . . . . 6
|
| 8 | fri 5076 |
. . . . . 6
| |
| 9 | 2, 3, 5, 7, 8 | syl22anc 1327 |
. . . . 5
|
| 10 | breq2 4657 |
. . . . . . . . 9
| |
| 11 | 10 | notbid 308 |
. . . . . . . 8
|
| 12 | 11 | ralbidv 2986 |
. . . . . . 7
|
| 13 | breq2 4657 |
. . . . . . . . 9
| |
| 14 | 13 | notbid 308 |
. . . . . . . 8
|
| 15 | 14 | ralbidv 2986 |
. . . . . . 7
|
| 16 | 12, 15 | rexprg 4235 |
. . . . . 6
|
| 17 | 16 | adantl 482 |
. . . . 5
|
| 18 | 9, 17 | mpbid 222 |
. . . 4
|
| 19 | prid2g 4296 |
. . . . . . 7
| |
| 20 | 19 | ad2antll 765 |
. . . . . 6
|
| 21 | breq1 4656 |
. . . . . . . 8
| |
| 22 | 21 | notbid 308 |
. . . . . . 7
|
| 23 | 22 | rspcv 3305 |
. . . . . 6
|
| 24 | 20, 23 | syl 17 |
. . . . 5
|
| 25 | prid1g 4295 |
. . . . . . 7
| |
| 26 | 25 | ad2antrl 764 |
. . . . . 6
|
| 27 | breq1 4656 |
. . . . . . . 8
| |
| 28 | 27 | notbid 308 |
. . . . . . 7
|
| 29 | 28 | rspcv 3305 |
. . . . . 6
|
| 30 | 26, 29 | syl 17 |
. . . . 5
|
| 31 | 24, 30 | orim12d 883 |
. . . 4
|
| 32 | 18, 31 | mpd 15 |
. . 3
|
| 33 | 32 | orcomd 403 |
. 2
|
| 34 | ianor 509 |
. 2
| |
| 35 | 33, 34 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-fr 5073 |
| This theorem is referenced by: efrn2lp 5096 dfwe2 6981 |
| Copyright terms: Public domain | W3C validator |