MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr2nr Structured version   Visualization version   Unicode version

Theorem fr2nr 5092
Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
fr2nr  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem fr2nr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 4909 . . . . . . 7  |-  { B ,  C }  e.  _V
21a1i 11 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  e.  _V )
3 simpl 473 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  R  Fr  A )
4 prssi 4353 . . . . . . 7  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
54adantl 482 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  C_  A
)
6 prnzg 4311 . . . . . . 7  |-  ( B  e.  A  ->  { B ,  C }  =/=  (/) )
76ad2antrl 764 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  { B ,  C }  =/=  (/) )
8 fri 5076 . . . . . 6  |-  ( ( ( { B ,  C }  e.  _V  /\  R  Fr  A )  /\  ( { B ,  C }  C_  A  /\  { B ,  C }  =/=  (/) ) )  ->  E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y )
92, 3, 5, 7, 8syl22anc 1327 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y )
10 breq2 4657 . . . . . . . . 9  |-  ( y  =  B  ->  (
x R y  <->  x R B ) )
1110notbid 308 . . . . . . . 8  |-  ( y  =  B  ->  ( -.  x R y  <->  -.  x R B ) )
1211ralbidv 2986 . . . . . . 7  |-  ( y  =  B  ->  ( A. x  e.  { B ,  C }  -.  x R y  <->  A. x  e.  { B ,  C }  -.  x R B ) )
13 breq2 4657 . . . . . . . . 9  |-  ( y  =  C  ->  (
x R y  <->  x R C ) )
1413notbid 308 . . . . . . . 8  |-  ( y  =  C  ->  ( -.  x R y  <->  -.  x R C ) )
1514ralbidv 2986 . . . . . . 7  |-  ( y  =  C  ->  ( A. x  e.  { B ,  C }  -.  x R y  <->  A. x  e.  { B ,  C }  -.  x R C ) )
1612, 15rexprg 4235 . . . . . 6  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( E. y  e. 
{ B ,  C } A. x  e.  { B ,  C }  -.  x R y  <->  ( A. x  e.  { B ,  C }  -.  x R B  \/  A. x  e.  { B ,  C }  -.  x R C ) ) )
1716adantl 482 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( E. y  e.  { B ,  C } A. x  e.  { B ,  C }  -.  x R y  <-> 
( A. x  e. 
{ B ,  C }  -.  x R B  \/  A. x  e. 
{ B ,  C }  -.  x R C ) ) )
189, 17mpbid 222 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R B  \/  A. x  e.  { B ,  C }  -.  x R C ) )
19 prid2g 4296 . . . . . . 7  |-  ( C  e.  A  ->  C  e.  { B ,  C } )
2019ad2antll 765 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  C  e.  { B ,  C } )
21 breq1 4656 . . . . . . . 8  |-  ( x  =  C  ->  (
x R B  <->  C R B ) )
2221notbid 308 . . . . . . 7  |-  ( x  =  C  ->  ( -.  x R B  <->  -.  C R B ) )
2322rspcv 3305 . . . . . 6  |-  ( C  e.  { B ,  C }  ->  ( A. x  e.  { B ,  C }  -.  x R B  ->  -.  C R B ) )
2420, 23syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R B  ->  -.  C R B ) )
25 prid1g 4295 . . . . . . 7  |-  ( B  e.  A  ->  B  e.  { B ,  C } )
2625ad2antrl 764 . . . . . 6  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  B  e.  { B ,  C } )
27 breq1 4656 . . . . . . . 8  |-  ( x  =  B  ->  (
x R C  <->  B R C ) )
2827notbid 308 . . . . . . 7  |-  ( x  =  B  ->  ( -.  x R C  <->  -.  B R C ) )
2928rspcv 3305 . . . . . 6  |-  ( B  e.  { B ,  C }  ->  ( A. x  e.  { B ,  C }  -.  x R C  ->  -.  B R C ) )
3026, 29syl 17 . . . . 5  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( A. x  e.  { B ,  C }  -.  x R C  ->  -.  B R C ) )
3124, 30orim12d 883 . . . 4  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( A. x  e. 
{ B ,  C }  -.  x R B  \/  A. x  e. 
{ B ,  C }  -.  x R C )  ->  ( -.  C R B  \/  -.  B R C ) ) )
3218, 31mpd 15 . . 3  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  C R B  \/  -.  B R C ) )
3332orcomd 403 . 2  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B R C  \/  -.  C R B ) )
34 ianor 509 . 2  |-  ( -.  ( B R C  /\  C R B )  <->  ( -.  B R C  \/  -.  C R B ) )
3533, 34sylibr 224 1  |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {cpr 4179   class class class wbr 4653    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-fr 5073
This theorem is referenced by:  efrn2lp  5096  dfwe2  6981
  Copyright terms: Public domain W3C validator