MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr0 Structured version   Visualization version   Unicode version

Theorem usgr0 26135
Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020.)
Assertion
Ref Expression
usgr0  |-  (/)  e. USGraph

Proof of Theorem usgr0
StepHypRef Expression
1 f10 6169 . . 3  |-  (/) : (/) -1-1-> { x  e.  ( ~P (/)  \  { (/) } )  |  ( # `  x
)  =  2 }
2 dm0 5339 . . . 4  |-  dom  (/)  =  (/)
3 f1eq2 6097 . . . 4  |-  ( dom  (/)  =  (/)  ->  ( (/) : dom  (/) -1-1-> { x  e.  ( ~P (/)  \  { (/) } )  |  ( # `  x )  =  2 }  <->  (/) : (/) -1-1-> { x  e.  ( ~P (/)  \  { (/)
} )  |  (
# `  x )  =  2 } ) )
42, 3ax-mp 5 . . 3  |-  ( (/) : dom  (/) -1-1-> { x  e.  ( ~P (/)  \  { (/) } )  |  ( # `  x )  =  2 }  <->  (/) : (/) -1-1-> { x  e.  ( ~P (/)  \  { (/)
} )  |  (
# `  x )  =  2 } )
51, 4mpbir 221 . 2  |-  (/) : dom  (/) -1-1-> { x  e.  ( ~P (/)  \  { (/) } )  |  ( # `  x )  =  2 }
6 0ex 4790 . . 3  |-  (/)  e.  _V
7 vtxval0 25931 . . . . 5  |-  (Vtx `  (/) )  =  (/)
87eqcomi 2631 . . . 4  |-  (/)  =  (Vtx
`  (/) )
9 iedgval0 25932 . . . . 5  |-  (iEdg `  (/) )  =  (/)
109eqcomi 2631 . . . 4  |-  (/)  =  (iEdg `  (/) )
118, 10isusgr 26048 . . 3  |-  ( (/)  e.  _V  ->  ( (/)  e. USGraph  <->  (/) : dom  (/) -1-1-> { x  e.  ( ~P (/)  \  { (/) } )  |  ( # `  x )  =  2 } ) )
126, 11ax-mp 5 . 2  |-  ( (/)  e. USGraph  <->  (/)
: dom  (/) -1-1-> { x  e.  ( ~P (/)  \  { (/)
} )  |  (
# `  x )  =  2 } )
135, 12mpbir 221 1  |-  (/)  e. USGraph
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   -1-1->wf1 5885   ` cfv 5888   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fv 5896  df-slot 15861  df-base 15863  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-usgr 26046
This theorem is referenced by:  cusgr0  26322  frgr0  27128
  Copyright terms: Public domain W3C validator