MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem5a Structured version   Visualization version   Unicode version

Theorem frgrwopreglem5a 27175
Description: If a friendship graph has two vertices with the same degree and two other vertices with different degrees, then there is a 4-cycle in the graph. Alternate version of frgrwopreglem5 27185 without a fixed degree and without using the sets  A and  B. (Contributed by Alexander van der Vekens, 31-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v  |-  V  =  (Vtx `  G )
frgrncvvdeq.d  |-  D  =  (VtxDeg `  G )
frgrwopreglem4a.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
frgrwopreglem5a  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  -> 
( ( { A ,  B }  e.  E  /\  { B ,  X }  e.  E )  /\  ( { X ,  Y }  e.  E  /\  { Y ,  A }  e.  E )
) )

Proof of Theorem frgrwopreglem5a
StepHypRef Expression
1 id 22 . . 3  |-  ( G  e. FriendGraph  ->  G  e. FriendGraph  )
2 simpl 473 . . . 4  |-  ( ( A  e.  V  /\  X  e.  V )  ->  A  e.  V )
3 simpl 473 . . . 4  |-  ( ( B  e.  V  /\  Y  e.  V )  ->  B  e.  V )
42, 3anim12i 590 . . 3  |-  ( ( ( A  e.  V  /\  X  e.  V
)  /\  ( B  e.  V  /\  Y  e.  V ) )  -> 
( A  e.  V  /\  B  e.  V
) )
5 simp2 1062 . . 3  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  A )  =/=  ( D `  B
) )
6 frgrncvvdeq.v . . . 4  |-  V  =  (Vtx `  G )
7 frgrncvvdeq.d . . . 4  |-  D  =  (VtxDeg `  G )
8 frgrwopreglem4a.e . . . 4  |-  E  =  (Edg `  G )
96, 7, 8frgrwopreglem4a 27174 . . 3  |-  ( ( G  e. FriendGraph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( D `  A )  =/=  ( D `  B
) )  ->  { A ,  B }  e.  E
)
101, 4, 5, 9syl3an 1368 . 2  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  ->  { A ,  B }  e.  E )
11 simpr 477 . . . 4  |-  ( ( A  e.  V  /\  X  e.  V )  ->  X  e.  V )
1211, 3anim12ci 591 . . 3  |-  ( ( ( A  e.  V  /\  X  e.  V
)  /\  ( B  e.  V  /\  Y  e.  V ) )  -> 
( B  e.  V  /\  X  e.  V
) )
13 pm13.18 2875 . . . . 5  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B ) )  -> 
( D `  X
)  =/=  ( D `
 B ) )
14133adant3 1081 . . . 4  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  X )  =/=  ( D `  B
) )
1514necomd 2849 . . 3  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  B )  =/=  ( D `  X
) )
166, 7, 8frgrwopreglem4a 27174 . . 3  |-  ( ( G  e. FriendGraph  /\  ( B  e.  V  /\  X  e.  V )  /\  ( D `  B )  =/=  ( D `  X
) )  ->  { B ,  X }  e.  E
)
171, 12, 15, 16syl3an 1368 . 2  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  ->  { B ,  X }  e.  E )
18 simpr 477 . . . . 5  |-  ( ( B  e.  V  /\  Y  e.  V )  ->  Y  e.  V )
1911, 18anim12i 590 . . . 4  |-  ( ( ( A  e.  V  /\  X  e.  V
)  /\  ( B  e.  V  /\  Y  e.  V ) )  -> 
( X  e.  V  /\  Y  e.  V
) )
20 simp3 1063 . . . 4  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  X )  =/=  ( D `  Y
) )
216, 7, 8frgrwopreglem4a 27174 . . . 4  |-  ( ( G  e. FriendGraph  /\  ( X  e.  V  /\  Y  e.  V )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  { X ,  Y }  e.  E
)
221, 19, 20, 21syl3an 1368 . . 3  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  ->  { X ,  Y }  e.  E )
232, 18anim12ci 591 . . . 4  |-  ( ( ( A  e.  V  /\  X  e.  V
)  /\  ( B  e.  V  /\  Y  e.  V ) )  -> 
( Y  e.  V  /\  A  e.  V
) )
24 pm13.181 2876 . . . . . 6  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  X )  =/=  ( D `  Y ) )  -> 
( D `  A
)  =/=  ( D `
 Y ) )
25243adant2 1080 . . . . 5  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  A )  =/=  ( D `  Y
) )
2625necomd 2849 . . . 4  |-  ( ( ( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) )  ->  ( D `  Y )  =/=  ( D `  A
) )
276, 7, 8frgrwopreglem4a 27174 . . . 4  |-  ( ( G  e. FriendGraph  /\  ( Y  e.  V  /\  A  e.  V )  /\  ( D `  Y )  =/=  ( D `  A
) )  ->  { Y ,  A }  e.  E
)
281, 23, 26, 27syl3an 1368 . . 3  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  ->  { Y ,  A }  e.  E )
2922, 28jca 554 . 2  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  -> 
( { X ,  Y }  e.  E  /\  { Y ,  A }  e.  E )
)
3010, 17, 29jca31 557 1  |-  ( ( G  e. FriendGraph  /\  ( ( A  e.  V  /\  X  e.  V )  /\  ( B  e.  V  /\  Y  e.  V
) )  /\  (
( D `  A
)  =  ( D `
 X )  /\  ( D `  A )  =/=  ( D `  B )  /\  ( D `  X )  =/=  ( D `  Y
) ) )  -> 
( ( { A ,  B }  e.  E  /\  { B ,  X }  e.  E )  /\  ( { X ,  Y }  e.  E  /\  { Y ,  A }  e.  E )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179   ` cfv 5888  Vtxcvtx 25874  Edgcedg 25939  VtxDegcvtxdg 26361   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-hash 13118  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-nbgr 26228  df-vtxdg 26362  df-frgr 27121
This theorem is referenced by:  frgrwopreglem5  27185
  Copyright terms: Public domain W3C validator