MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fulli Structured version   Visualization version   Unicode version

Theorem fulli 16573
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
isfull.h  |-  H  =  ( Hom  `  C
)
fullfo.f  |-  ( ph  ->  F ( C Full  D
) G )
fullfo.x  |-  ( ph  ->  X  e.  B )
fullfo.y  |-  ( ph  ->  Y  e.  B )
fulli.r  |-  ( ph  ->  R  e.  ( ( F `  X ) J ( F `  Y ) ) )
Assertion
Ref Expression
fulli  |-  ( ph  ->  E. f  e.  ( X H Y ) R  =  ( ( X G Y ) `
 f ) )
Distinct variable groups:    B, f    C, f    D, f    f, H   
f, J    R, f    f, X    f, Y    f, F    f, G
Allowed substitution hint:    ph( f)

Proof of Theorem fulli
StepHypRef Expression
1 isfull.b . . 3  |-  B  =  ( Base `  C
)
2 isfull.j . . 3  |-  J  =  ( Hom  `  D
)
3 isfull.h . . 3  |-  H  =  ( Hom  `  C
)
4 fullfo.f . . 3  |-  ( ph  ->  F ( C Full  D
) G )
5 fullfo.x . . 3  |-  ( ph  ->  X  e.  B )
6 fullfo.y . . 3  |-  ( ph  ->  Y  e.  B )
71, 2, 3, 4, 5, 6fullfo 16572 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
8 fulli.r . 2  |-  ( ph  ->  R  e.  ( ( F `  X ) J ( F `  Y ) ) )
9 foelrn 6378 . 2  |-  ( ( ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) )  /\  R  e.  ( ( F `  X
) J ( F `
 Y ) ) )  ->  E. f  e.  ( X H Y ) R  =  ( ( X G Y ) `  f ) )
107, 8, 9syl2anc 693 1  |-  ( ph  ->  E. f  e.  ( X H Y ) R  =  ( ( X G Y ) `
 f ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Full cful 16562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-full 16564
This theorem is referenced by:  ffthiso  16589
  Copyright terms: Public domain W3C validator