MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullfo Structured version   Visualization version   Unicode version

Theorem fullfo 16572
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
isfull.h  |-  H  =  ( Hom  `  C
)
fullfo.f  |-  ( ph  ->  F ( C Full  D
) G )
fullfo.x  |-  ( ph  ->  X  e.  B )
fullfo.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
fullfo  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )

Proof of Theorem fullfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfo.f . . 3  |-  ( ph  ->  F ( C Full  D
) G )
2 isfull.b . . . . 5  |-  B  =  ( Base `  C
)
3 isfull.j . . . . 5  |-  J  =  ( Hom  `  D
)
4 isfull.h . . . . 5  |-  H  =  ( Hom  `  C
)
52, 3, 4isfull2 16571 . . . 4  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) ) ) )
65simprbi 480 . . 3  |-  ( F ( C Full  D ) G  ->  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `
 x ) J ( F `  y
) ) )
71, 6syl 17 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) ) )
8 fullfo.x . . 3  |-  ( ph  ->  X  e.  B )
9 fullfo.y . . . . 5  |-  ( ph  ->  Y  e.  B )
109adantr 481 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
11 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  x  =  X )
12 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  y  =  Y )
1311, 12oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
x G y )  =  ( X G Y ) )
1411, 12oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
x H y )  =  ( X H Y ) )
1511fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( F `  x )  =  ( F `  X ) )
1612fveq2d 6195 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( F `  y )  =  ( F `  Y ) )
1715, 16oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
( F `  x
) J ( F `
 y ) )  =  ( ( F `
 X ) J ( F `  Y
) ) )
1813, 14, 17foeq123d 6132 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  <-> 
( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) ) )
1910, 18rspcdv 3312 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  ( x G y ) : ( x H y ) -onto-> ( ( F `  x
) J ( F `
 y ) )  ->  ( X G Y ) : ( X H Y )
-onto-> ( ( F `  X ) J ( F `  Y ) ) ) )
208, 19rspcimdv 3310 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( x G y ) : ( x H y )
-onto-> ( ( F `  x ) J ( F `  y ) )  ->  ( X G Y ) : ( X H Y )
-onto-> ( ( F `  X ) J ( F `  Y ) ) ) )
217, 20mpd 15 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952    Func cfunc 16514   Full cful 16562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-func 16518  df-full 16564
This theorem is referenced by:  fulli  16573  ffthf1o  16579  fulloppc  16582  cofull  16594
  Copyright terms: Public domain W3C validator