MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Visualization version   Unicode version

Theorem fullpropd 16580
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fullpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fullpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fullpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fullpropd.a  |-  ( ph  ->  A  e.  V )
fullpropd.b  |-  ( ph  ->  B  e.  V )
fullpropd.c  |-  ( ph  ->  C  e.  V )
fullpropd.d  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fullpropd  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )

Proof of Theorem fullpropd
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 16568 . 2  |-  Rel  ( A Full  C )
2 relfull 16568 . 2  |-  Rel  ( B Full  D )
3 fullpropd.1 . . . . . . . 8  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
43homfeqbas 16356 . . . . . . 7  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( Base `  A )  =  (
Base `  B )
)
65adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( Base `  A )  =  ( Base `  B
) )
7 eqid 2622 . . . . . . . . 9  |-  ( Base `  C )  =  (
Base `  C )
8 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
9 eqid 2622 . . . . . . . . 9  |-  ( Hom  `  D )  =  ( Hom  `  D )
10 fullpropd.3 . . . . . . . . . 10  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
1110ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( Hom f  `  C )  =  ( Hom f  `  D ) )
12 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  A )  =  (
Base `  A )
13 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f ( A  Func  C ) g )
1412, 7, 13funcf1 16526 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f : ( Base `  A ) --> ( Base `  C ) )
15 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  ->  x  e.  ( Base `  A ) )
1614, 15ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  x
)  e.  ( Base `  C ) )
17 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
y  e.  ( Base `  A ) )
1814, 17ffvelrnd 6360 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  y
)  e.  ( Base `  C ) )
197, 8, 9, 11, 16, 18homfeqval 16357 . . . . . . . 8  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  =  ( ( f `
 x ) ( Hom  `  D )
( f `  y
) ) )
2019eqeq2d 2632 . . . . . . 7  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  D
) ( f `  y ) ) ) )
216, 20raleqbidva 3154 . . . . . 6  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  A. y  e.  ( Base `  B ) ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  D
) ( f `  y ) ) ) )
225, 21raleqbidva 3154 . . . . 5  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) ran  (
x g y )  =  ( ( f `
 x ) ( Hom  `  D )
( f `  y
) ) ) )
2322pm5.32da 673 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
24 fullpropd.2 . . . . . . 7  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
25 fullpropd.4 . . . . . . 7  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
26 fullpropd.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
27 fullpropd.b . . . . . . 7  |-  ( ph  ->  B  e.  V )
28 fullpropd.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
29 fullpropd.d . . . . . . 7  |-  ( ph  ->  D  e.  V )
303, 24, 10, 25, 26, 27, 28, 29funcpropd 16560 . . . . . 6  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
3130breqd 4664 . . . . 5  |-  ( ph  ->  ( f ( A 
Func  C ) g  <->  f ( B  Func  D ) g ) )
3231anbi1d 741 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
3323, 32bitrd 268 . . 3  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
3412, 8isfull 16570 . . 3  |-  ( f ( A Full  C ) g  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) ) )
35 eqid 2622 . . . 4  |-  ( Base `  B )  =  (
Base `  B )
3635, 9isfull 16570 . . 3  |-  ( f ( B Full  D ) g  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) )
3733, 34, 363bitr4g 303 . 2  |-  ( ph  ->  ( f ( A Full 
C ) g  <->  f ( B Full  D ) g ) )
381, 2, 37eqbrrdiv 5218 1  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Hom f chomf 16327  compfccomf 16328    Func cfunc 16514   Full cful 16562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-func 16518  df-full 16564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator