MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun11 Structured version   Visualization version   Unicode version

Theorem fun11 5963
Description: Two ways of stating that  A is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
fun11  |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <->  A. x A. y A. z A. w ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) ) )
Distinct variable group:    x, y, z, w, A

Proof of Theorem fun11
StepHypRef Expression
1 dfbi2 660 . . . . . . . 8  |-  ( ( x  =  z  <->  y  =  w )  <->  ( (
x  =  z  -> 
y  =  w )  /\  ( y  =  w  ->  x  =  z ) ) )
21imbi2i 326 . . . . . . 7  |-  ( ( ( x A y  /\  z A w )  ->  ( x  =  z  <->  y  =  w ) )  <->  ( (
x A y  /\  z A w )  -> 
( ( x  =  z  ->  y  =  w )  /\  (
y  =  w  ->  x  =  z )
) ) )
3 pm4.76 910 . . . . . . 7  |-  ( ( ( ( x A y  /\  z A w )  ->  (
x  =  z  -> 
y  =  w ) )  /\  ( ( x A y  /\  z A w )  -> 
( y  =  w  ->  x  =  z ) ) )  <->  ( (
x A y  /\  z A w )  -> 
( ( x  =  z  ->  y  =  w )  /\  (
y  =  w  ->  x  =  z )
) ) )
4 bi2.04 376 . . . . . . . 8  |-  ( ( ( x A y  /\  z A w )  ->  ( x  =  z  ->  y  =  w ) )  <->  ( x  =  z  ->  ( ( x A y  /\  z A w )  -> 
y  =  w ) ) )
5 bi2.04 376 . . . . . . . 8  |-  ( ( ( x A y  /\  z A w )  ->  ( y  =  w  ->  x  =  z ) )  <->  ( y  =  w  ->  ( ( x A y  /\  z A w )  ->  x  =  z )
) )
64, 5anbi12i 733 . . . . . . 7  |-  ( ( ( ( x A y  /\  z A w )  ->  (
x  =  z  -> 
y  =  w ) )  /\  ( ( x A y  /\  z A w )  -> 
( y  =  w  ->  x  =  z ) ) )  <->  ( (
x  =  z  -> 
( ( x A y  /\  z A w )  ->  y  =  w ) )  /\  ( y  =  w  ->  ( ( x A y  /\  z A w )  ->  x  =  z )
) ) )
72, 3, 63bitr2i 288 . . . . . 6  |-  ( ( ( x A y  /\  z A w )  ->  ( x  =  z  <->  y  =  w ) )  <->  ( (
x  =  z  -> 
( ( x A y  /\  z A w )  ->  y  =  w ) )  /\  ( y  =  w  ->  ( ( x A y  /\  z A w )  ->  x  =  z )
) ) )
872albii 1748 . . . . 5  |-  ( A. x A. y ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) )  <->  A. x A. y
( ( x  =  z  ->  ( (
x A y  /\  z A w )  -> 
y  =  w ) )  /\  ( y  =  w  ->  (
( x A y  /\  z A w )  ->  x  =  z ) ) ) )
9 19.26-2 1799 . . . . 5  |-  ( A. x A. y ( ( x  =  z  -> 
( ( x A y  /\  z A w )  ->  y  =  w ) )  /\  ( y  =  w  ->  ( ( x A y  /\  z A w )  ->  x  =  z )
) )  <->  ( A. x A. y ( x  =  z  ->  (
( x A y  /\  z A w )  ->  y  =  w ) )  /\  A. x A. y ( y  =  w  -> 
( ( x A y  /\  z A w )  ->  x  =  z ) ) ) )
10 alcom 2037 . . . . . . 7  |-  ( A. x A. y ( x  =  z  ->  (
( x A y  /\  z A w )  ->  y  =  w ) )  <->  A. y A. x ( x  =  z  ->  ( (
x A y  /\  z A w )  -> 
y  =  w ) ) )
11 breq1 4656 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x A y  <->  z A
y ) )
1211anbi1d 741 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( x A y  /\  z A w )  <->  ( z A y  /\  z A w ) ) )
1312imbi1d 331 . . . . . . . . 9  |-  ( x  =  z  ->  (
( ( x A y  /\  z A w )  ->  y  =  w )  <->  ( (
z A y  /\  z A w )  -> 
y  =  w ) ) )
1413equsalvw 1931 . . . . . . . 8  |-  ( A. x ( x  =  z  ->  ( (
x A y  /\  z A w )  -> 
y  =  w ) )  <->  ( ( z A y  /\  z A w )  -> 
y  =  w ) )
1514albii 1747 . . . . . . 7  |-  ( A. y A. x ( x  =  z  ->  (
( x A y  /\  z A w )  ->  y  =  w ) )  <->  A. y
( ( z A y  /\  z A w )  ->  y  =  w ) )
1610, 15bitri 264 . . . . . 6  |-  ( A. x A. y ( x  =  z  ->  (
( x A y  /\  z A w )  ->  y  =  w ) )  <->  A. y
( ( z A y  /\  z A w )  ->  y  =  w ) )
17 breq2 4657 . . . . . . . . . 10  |-  ( y  =  w  ->  (
x A y  <->  x A w ) )
1817anbi1d 741 . . . . . . . . 9  |-  ( y  =  w  ->  (
( x A y  /\  z A w )  <->  ( x A w  /\  z A w ) ) )
1918imbi1d 331 . . . . . . . 8  |-  ( y  =  w  ->  (
( ( x A y  /\  z A w )  ->  x  =  z )  <->  ( (
x A w  /\  z A w )  ->  x  =  z )
) )
2019equsalvw 1931 . . . . . . 7  |-  ( A. y ( y  =  w  ->  ( (
x A y  /\  z A w )  ->  x  =  z )
)  <->  ( ( x A w  /\  z A w )  ->  x  =  z )
)
2120albii 1747 . . . . . 6  |-  ( A. x A. y ( y  =  w  ->  (
( x A y  /\  z A w )  ->  x  =  z ) )  <->  A. x
( ( x A w  /\  z A w )  ->  x  =  z ) )
2216, 21anbi12i 733 . . . . 5  |-  ( ( A. x A. y
( x  =  z  ->  ( ( x A y  /\  z A w )  -> 
y  =  w ) )  /\  A. x A. y ( y  =  w  ->  ( (
x A y  /\  z A w )  ->  x  =  z )
) )  <->  ( A. y ( ( z A y  /\  z A w )  -> 
y  =  w )  /\  A. x ( ( x A w  /\  z A w )  ->  x  =  z ) ) )
238, 9, 223bitri 286 . . . 4  |-  ( A. x A. y ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) )  <->  ( A. y
( ( z A y  /\  z A w )  ->  y  =  w )  /\  A. x ( ( x A w  /\  z A w )  ->  x  =  z )
) )
24232albii 1748 . . 3  |-  ( A. z A. w A. x A. y ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) )  <->  A. z A. w
( A. y ( ( z A y  /\  z A w )  ->  y  =  w )  /\  A. x ( ( x A w  /\  z A w )  ->  x  =  z )
) )
25 19.26-2 1799 . . 3  |-  ( A. z A. w ( A. y ( ( z A y  /\  z A w )  -> 
y  =  w )  /\  A. x ( ( x A w  /\  z A w )  ->  x  =  z ) )  <->  ( A. z A. w A. y
( ( z A y  /\  z A w )  ->  y  =  w )  /\  A. z A. w A. x
( ( x A w  /\  z A w )  ->  x  =  z ) ) )
2624, 25bitr2i 265 . 2  |-  ( ( A. z A. w A. y ( ( z A y  /\  z A w )  -> 
y  =  w )  /\  A. z A. w A. x ( ( x A w  /\  z A w )  ->  x  =  z )
)  <->  A. z A. w A. x A. y ( ( x A y  /\  z A w )  ->  ( x  =  z  <->  y  =  w ) ) )
27 fun2cnv 5960 . . . 4  |-  ( Fun  `' `' A  <->  A. z E* y 
z A y )
28 breq2 4657 . . . . . 6  |-  ( y  =  w  ->  (
z A y  <->  z A w ) )
2928mo4 2517 . . . . 5  |-  ( E* y  z A y  <->  A. y A. w ( ( z A y  /\  z A w )  ->  y  =  w ) )
3029albii 1747 . . . 4  |-  ( A. z E* y  z A y  <->  A. z A. y A. w ( ( z A y  /\  z A w )  -> 
y  =  w ) )
31 alcom 2037 . . . . 5  |-  ( A. y A. w ( ( z A y  /\  z A w )  -> 
y  =  w )  <->  A. w A. y ( ( z A y  /\  z A w )  ->  y  =  w ) )
3231albii 1747 . . . 4  |-  ( A. z A. y A. w
( ( z A y  /\  z A w )  ->  y  =  w )  <->  A. z A. w A. y ( ( z A y  /\  z A w )  ->  y  =  w ) )
3327, 30, 323bitri 286 . . 3  |-  ( Fun  `' `' A  <->  A. z A. w A. y ( ( z A y  /\  z A w )  -> 
y  =  w ) )
34 funcnv2 5957 . . . 4  |-  ( Fun  `' A  <->  A. w E* x  x A w )
35 breq1 4656 . . . . . 6  |-  ( x  =  z  ->  (
x A w  <->  z A w ) )
3635mo4 2517 . . . . 5  |-  ( E* x  x A w  <->  A. x A. z ( ( x A w  /\  z A w )  ->  x  =  z ) )
3736albii 1747 . . . 4  |-  ( A. w E* x  x A w  <->  A. w A. x A. z ( ( x A w  /\  z A w )  ->  x  =  z )
)
38 alcom 2037 . . . . . 6  |-  ( A. x A. z ( ( x A w  /\  z A w )  ->  x  =  z )  <->  A. z A. x ( ( x A w  /\  z A w )  ->  x  =  z ) )
3938albii 1747 . . . . 5  |-  ( A. w A. x A. z
( ( x A w  /\  z A w )  ->  x  =  z )  <->  A. w A. z A. x ( ( x A w  /\  z A w )  ->  x  =  z ) )
40 alcom 2037 . . . . 5  |-  ( A. w A. z A. x
( ( x A w  /\  z A w )  ->  x  =  z )  <->  A. z A. w A. x ( ( x A w  /\  z A w )  ->  x  =  z ) )
4139, 40bitri 264 . . . 4  |-  ( A. w A. x A. z
( ( x A w  /\  z A w )  ->  x  =  z )  <->  A. z A. w A. x ( ( x A w  /\  z A w )  ->  x  =  z ) )
4234, 37, 413bitri 286 . . 3  |-  ( Fun  `' A  <->  A. z A. w A. x ( ( x A w  /\  z A w )  ->  x  =  z )
)
4333, 42anbi12i 733 . 2  |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <-> 
( A. z A. w A. y ( ( z A y  /\  z A w )  -> 
y  =  w )  /\  A. z A. w A. x ( ( x A w  /\  z A w )  ->  x  =  z )
) )
44 alrot4 2039 . 2  |-  ( A. x A. y A. z A. w ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) )  <->  A. z A. w A. x A. y ( ( x A y  /\  z A w )  ->  ( x  =  z  <->  y  =  w ) ) )
4526, 43, 443bitr4i 292 1  |-  ( ( Fun  `' `' A  /\  Fun  `' A )  <->  A. x A. y A. z A. w ( ( x A y  /\  z A w )  -> 
( x  =  z  <-> 
y  =  w ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E*wmo 2471   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator