| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun11 | Structured version Visualization version Unicode version | ||
| Description: Two ways of stating that
|
| Ref | Expression |
|---|---|
| fun11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 660 |
. . . . . . . 8
| |
| 2 | 1 | imbi2i 326 |
. . . . . . 7
|
| 3 | pm4.76 910 |
. . . . . . 7
| |
| 4 | bi2.04 376 |
. . . . . . . 8
| |
| 5 | bi2.04 376 |
. . . . . . . 8
| |
| 6 | 4, 5 | anbi12i 733 |
. . . . . . 7
|
| 7 | 2, 3, 6 | 3bitr2i 288 |
. . . . . 6
|
| 8 | 7 | 2albii 1748 |
. . . . 5
|
| 9 | 19.26-2 1799 |
. . . . 5
| |
| 10 | alcom 2037 |
. . . . . . 7
| |
| 11 | breq1 4656 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi1d 741 |
. . . . . . . . . 10
|
| 13 | 12 | imbi1d 331 |
. . . . . . . . 9
|
| 14 | 13 | equsalvw 1931 |
. . . . . . . 8
|
| 15 | 14 | albii 1747 |
. . . . . . 7
|
| 16 | 10, 15 | bitri 264 |
. . . . . 6
|
| 17 | breq2 4657 |
. . . . . . . . . 10
| |
| 18 | 17 | anbi1d 741 |
. . . . . . . . 9
|
| 19 | 18 | imbi1d 331 |
. . . . . . . 8
|
| 20 | 19 | equsalvw 1931 |
. . . . . . 7
|
| 21 | 20 | albii 1747 |
. . . . . 6
|
| 22 | 16, 21 | anbi12i 733 |
. . . . 5
|
| 23 | 8, 9, 22 | 3bitri 286 |
. . . 4
|
| 24 | 23 | 2albii 1748 |
. . 3
|
| 25 | 19.26-2 1799 |
. . 3
| |
| 26 | 24, 25 | bitr2i 265 |
. 2
|
| 27 | fun2cnv 5960 |
. . . 4
| |
| 28 | breq2 4657 |
. . . . . 6
| |
| 29 | 28 | mo4 2517 |
. . . . 5
|
| 30 | 29 | albii 1747 |
. . . 4
|
| 31 | alcom 2037 |
. . . . 5
| |
| 32 | 31 | albii 1747 |
. . . 4
|
| 33 | 27, 30, 32 | 3bitri 286 |
. . 3
|
| 34 | funcnv2 5957 |
. . . 4
| |
| 35 | breq1 4656 |
. . . . . 6
| |
| 36 | 35 | mo4 2517 |
. . . . 5
|
| 37 | 36 | albii 1747 |
. . . 4
|
| 38 | alcom 2037 |
. . . . . 6
| |
| 39 | 38 | albii 1747 |
. . . . 5
|
| 40 | alcom 2037 |
. . . . 5
| |
| 41 | 39, 40 | bitri 264 |
. . . 4
|
| 42 | 34, 37, 41 | 3bitri 286 |
. . 3
|
| 43 | 33, 42 | anbi12i 733 |
. 2
|
| 44 | alrot4 2039 |
. 2
| |
| 45 | 26, 43, 44 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-fun 5890 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |