MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcixp Structured version   Visualization version   Unicode version

Theorem funcixp 16527
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b  |-  B  =  ( Base `  D
)
funcixp.h  |-  H  =  ( Hom  `  D
)
funcixp.j  |-  J  =  ( Hom  `  E
)
funcixp.f  |-  ( ph  ->  F ( D  Func  E ) G )
Assertion
Ref Expression
funcixp  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Distinct variable groups:    z, B    z, D    z, E    ph, z    z, F    z, G    z, J    z, H

Proof of Theorem funcixp
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcixp.f . . 3  |-  ( ph  ->  F ( D  Func  E ) G )
2 funcixp.b . . . 4  |-  B  =  ( Base `  D
)
3 eqid 2622 . . . 4  |-  ( Base `  E )  =  (
Base `  E )
4 funcixp.h . . . 4  |-  H  =  ( Hom  `  D
)
5 funcixp.j . . . 4  |-  J  =  ( Hom  `  E
)
6 eqid 2622 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
7 eqid 2622 . . . 4  |-  ( Id
`  E )  =  ( Id `  E
)
8 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
9 eqid 2622 . . . 4  |-  (comp `  E )  =  (comp `  E )
10 df-br 4654 . . . . . . 7  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
111, 10sylib 208 . . . . . 6  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
12 funcrcl 16523 . . . . . 6  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1311, 12syl 17 . . . . 5  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1413simpld 475 . . . 4  |-  ( ph  ->  D  e.  Cat )
1513simprd 479 . . . 4  |-  ( ph  ->  E  e.  Cat )
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 16524 . . 3  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> ( Base `  E
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  ( ( Id `  D ) `
 x ) )  =  ( ( Id
`  E ) `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) ) )
171, 16mpbid 222 . 2  |-  ( ph  ->  ( F : B --> ( Base `  E )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 ( ( Id
`  D ) `  x ) )  =  ( ( Id `  E ) `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.
(comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) )
1817simp2d 1074 1  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ixp 7909  df-func 16518
This theorem is referenced by:  funcf2  16528  funcfn2  16529  wunfunc  16559
  Copyright terms: Public domain W3C validator