MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfunc Structured version   Visualization version   Unicode version

Theorem isfunc 16524
Description: Value of the set of functors between two categories. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isfunc.b  |-  B  =  ( Base `  D
)
isfunc.c  |-  C  =  ( Base `  E
)
isfunc.h  |-  H  =  ( Hom  `  D
)
isfunc.j  |-  J  =  ( Hom  `  E
)
isfunc.1  |-  .1.  =  ( Id `  D )
isfunc.i  |-  I  =  ( Id `  E
)
isfunc.x  |-  .x.  =  (comp `  D )
isfunc.o  |-  O  =  (comp `  E )
isfunc.d  |-  ( ph  ->  D  e.  Cat )
isfunc.e  |-  ( ph  ->  E  e.  Cat )
Assertion
Ref Expression
isfunc  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> C  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
Distinct variable groups:    m, n, x, y, z, B    D, m, n, x, y, z   
m, E, n, x, y, z    m, H, n, x, y, z   
m, F, n, x, y, z    m, G, n, x, y, z   
x, J, y, z    ph, m, n, x, y, z
Allowed substitution hints:    C( x, y, z, m, n)    .x. ( x, y, z, m, n)    .1. ( x, y, z, m, n)    I( x, y, z, m, n)    J( m, n)    O( x, y, z, m, n)

Proof of Theorem isfunc
Dummy variables  b 
d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfunc.d . . . 4  |-  ( ph  ->  D  e.  Cat )
2 isfunc.e . . . 4  |-  ( ph  ->  E  e.  Cat )
3 fvexd 6203 . . . . . . 7  |-  ( ( d  =  D  /\  e  =  E )  ->  ( Base `  d
)  e.  _V )
4 simpl 473 . . . . . . . . 9  |-  ( ( d  =  D  /\  e  =  E )  ->  d  =  D )
54fveq2d 6195 . . . . . . . 8  |-  ( ( d  =  D  /\  e  =  E )  ->  ( Base `  d
)  =  ( Base `  D ) )
6 isfunc.b . . . . . . . 8  |-  B  =  ( Base `  D
)
75, 6syl6eqr 2674 . . . . . . 7  |-  ( ( d  =  D  /\  e  =  E )  ->  ( Base `  d
)  =  B )
8 simpr 477 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  b  =  B )
9 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  e  =  E )
109fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Base `  e )  =  ( Base `  E
) )
11 isfunc.c . . . . . . . . . . . 12  |-  C  =  ( Base `  E
)
1210, 11syl6eqr 2674 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Base `  e )  =  C )
138, 12feq23d 6040 . . . . . . . . . 10  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
f : b --> (
Base `  e )  <->  f : B --> C ) )
14 fvex 6201 . . . . . . . . . . . 12  |-  ( Base `  E )  e.  _V
1511, 14eqeltri 2697 . . . . . . . . . . 11  |-  C  e. 
_V
16 fvex 6201 . . . . . . . . . . . 12  |-  ( Base `  D )  e.  _V
176, 16eqeltri 2697 . . . . . . . . . . 11  |-  B  e. 
_V
1815, 17elmap 7886 . . . . . . . . . 10  |-  ( f  e.  ( C  ^m  B )  <->  f : B
--> C )
1913, 18syl6bbr 278 . . . . . . . . 9  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
f : b --> (
Base `  e )  <->  f  e.  ( C  ^m  B ) ) )
208sqxpeqd 5141 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
2120ixpeq1d 7920 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  X_ z  e.  ( b  X.  b
) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e )
( f `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  d ) `  z ) )  = 
X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) ( Hom  `  e ) ( f `
 ( 2nd `  z
) ) )  ^m  ( ( Hom  `  d
) `  z )
) )
229fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Hom  `  e )  =  ( Hom  `  E
) )
23 isfunc.j . . . . . . . . . . . . . . 15  |-  J  =  ( Hom  `  E
)
2422, 23syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Hom  `  e )  =  J )
2524oveqd 6667 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  =  ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) ) )
26 simpll 790 . . . . . . . . . . . . . . . 16  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  d  =  D )
2726fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Hom  `  d )  =  ( Hom  `  D
) )
28 isfunc.h . . . . . . . . . . . . . . 15  |-  H  =  ( Hom  `  D
)
2927, 28syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Hom  `  d )  =  H )
3029fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( Hom  `  d ) `
 z )  =  ( H `  z
) )
3125, 30oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  =  ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
3231ixpeq2dv 7924 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e )
( f `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  d ) `  z ) )  = 
X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )
3321, 32eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  X_ z  e.  ( b  X.  b
) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e )
( f `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  d ) `  z ) )  = 
X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )
3433eleq2d 2687 . . . . . . . . 9  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
g  e.  X_ z  e.  ( b  X.  b
) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e )
( f `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  d ) `  z ) )  <->  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) ) ) )
3526fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Id `  d )  =  ( Id `  D
) )
36 isfunc.1 . . . . . . . . . . . . . . 15  |-  .1.  =  ( Id `  D )
3735, 36syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Id `  d )  =  .1.  )
3837fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( Id `  d
) `  x )  =  (  .1.  `  x
) )
3938fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( x g x ) `  ( ( Id `  d ) `
 x ) )  =  ( ( x g x ) `  (  .1.  `  x )
) )
409fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Id `  e )  =  ( Id `  E
) )
41 isfunc.i . . . . . . . . . . . . . 14  |-  I  =  ( Id `  E
)
4240, 41syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( Id `  e )  =  I )
4342fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( Id `  e
) `  ( f `  x ) )  =  ( I `  (
f `  x )
) )
4439, 43eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( ( x g x ) `  (
( Id `  d
) `  x )
)  =  ( ( Id `  e ) `
 ( f `  x ) )  <->  ( (
x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
) ) )
4529oveqd 6667 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
x ( Hom  `  d
) y )  =  ( x H y ) )
4629oveqd 6667 . . . . . . . . . . . . . . 15  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
y ( Hom  `  d
) z )  =  ( y H z ) )
4726fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (comp `  d )  =  (comp `  D ) )
48 isfunc.x . . . . . . . . . . . . . . . . . . . 20  |-  .x.  =  (comp `  D )
4947, 48syl6eqr 2674 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (comp `  d )  =  .x.  )
5049oveqd 6667 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( <. x ,  y >.
(comp `  d )
z )  =  (
<. x ,  y >.  .x.  z ) )
5150oveqd 6667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
n ( <. x ,  y >. (comp `  d ) z ) m )  =  ( n ( <. x ,  y >.  .x.  z
) m ) )
5251fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( x g z ) `
 ( n (
<. x ,  y >.  .x.  z ) m ) ) )
539fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (comp `  e )  =  (comp `  E ) )
54 isfunc.o . . . . . . . . . . . . . . . . . . 19  |-  O  =  (comp `  E )
5553, 54syl6eqr 2674 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (comp `  e )  =  O )
5655oveqd 6667 . . . . . . . . . . . . . . . . 17  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( <. ( f `  x
) ,  ( f `
 y ) >.
(comp `  e )
( f `  z
) )  =  (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) )
5756oveqd 6667 . . . . . . . . . . . . . . . 16  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. (comp `  e ) ( f `
 z ) ) ( ( x g y ) `  m
) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) )
5852, 57eqeq12d 2637 . . . . . . . . . . . . . . 15  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( ( x g z ) `  (
n ( <. x ,  y >. (comp `  d ) z ) m ) )  =  ( ( ( y g z ) `  n ) ( <.
( f `  x
) ,  ( f `
 y ) >.
(comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) )  <-> 
( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y g z ) `
 n ) (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )
5946, 58raleqbidv 3152 . . . . . . . . . . . . . 14  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( A. n  e.  (
y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) )  <->  A. n  e.  (
y H z ) ( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y g z ) `
 n ) (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )
6045, 59raleqbidv 3152 . . . . . . . . . . . . 13  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( A. m  e.  (
x ( Hom  `  d
) y ) A. n  e.  ( y
( Hom  `  d ) z ) ( ( x g z ) `
 ( n (
<. x ,  y >.
(comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) )  <->  A. m  e.  (
x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y g z ) `
 n ) (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )
618, 60raleqbidv 3152 . . . . . . . . . . . 12  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( A. z  e.  b  A. m  e.  (
x ( Hom  `  d
) y ) A. n  e.  ( y
( Hom  `  d ) z ) ( ( x g z ) `
 ( n (
<. x ,  y >.
(comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) )  <->  A. z  e.  B  A. m  e.  (
x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y g z ) `
 n ) (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )
628, 61raleqbidv 3152 . . . . . . . . . . 11  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( A. y  e.  b  A. z  e.  b  A. m  e.  (
x ( Hom  `  d
) y ) A. n  e.  ( y
( Hom  `  d ) z ) ( ( x g z ) `
 ( n (
<. x ,  y >.
(comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) )  <->  A. y  e.  B  A. z  e.  B  A. m  e.  (
x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y g z ) `
 n ) (
<. ( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )
6344, 62anbi12d 747 . . . . . . . . . 10  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( ( ( x g x ) `  ( ( Id `  d ) `  x
) )  =  ( ( Id `  e
) `  ( f `  x ) )  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x
( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d ) z ) ( ( x g z ) `  (
n ( <. x ,  y >. (comp `  d ) z ) m ) )  =  ( ( ( y g z ) `  n ) ( <.
( f `  x
) ,  ( f `
 y ) >.
(comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) )  <->  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) )
648, 63raleqbidv 3152 . . . . . . . . 9  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  ( A. x  e.  b 
( ( ( x g x ) `  ( ( Id `  d ) `  x
) )  =  ( ( Id `  e
) `  ( f `  x ) )  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x
( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d ) z ) ( ( x g z ) `  (
n ( <. x ,  y >. (comp `  d ) z ) m ) )  =  ( ( ( y g z ) `  n ) ( <.
( f `  x
) ,  ( f `
 y ) >.
(comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) )  <->  A. x  e.  B  ( ( ( x g x ) `  (  .1.  `  x )
)  =  ( I `
 ( f `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) )
6519, 34, 643anbi123d 1399 . . . . . . . 8  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( f : b --> ( Base `  e
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  d ) `  x ) )  =  ( ( Id `  e ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x ( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) )  <->  ( f  e.  ( C  ^m  B
)  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) ) )
66 df-3an 1039 . . . . . . . 8  |-  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )  <->  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) )
6765, 66syl6bb 276 . . . . . . 7  |-  ( ( ( d  =  D  /\  e  =  E )  /\  b  =  B )  ->  (
( f : b --> ( Base `  e
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  d ) `  x ) )  =  ( ( Id `  e ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x ( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) )  <->  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) ) )
683, 7, 67sbcied2 3473 . . . . . 6  |-  ( ( d  =  D  /\  e  =  E )  ->  ( [. ( Base `  d )  /  b ]. ( f : b --> ( Base `  e
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  d ) `  x ) )  =  ( ( Id `  e ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x ( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) )  <->  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) ) )
6968opabbidv 4716 . . . . 5  |-  ( ( d  =  D  /\  e  =  E )  ->  { <. f ,  g
>.  |  [. ( Base `  d )  /  b ]. ( f : b --> ( Base `  e
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  d ) `  x ) )  =  ( ( Id `  e ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x ( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) ) }  =  { <. f ,  g
>.  |  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } )
70 df-func 16518 . . . . 5  |-  Func  =  ( d  e.  Cat ,  e  e.  Cat  |->  {
<. f ,  g >.  |  [. ( Base `  d
)  /  b ]. ( f : b --> ( Base `  e
)  /\  g  e.  X_ z  e.  ( b  X.  b ) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  e
) ( f `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  d ) `
 z ) )  /\  A. x  e.  b  ( ( ( x g x ) `
 ( ( Id
`  d ) `  x ) )  =  ( ( Id `  e ) `  (
f `  x )
)  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x ( Hom  `  d ) y ) A. n  e.  ( y ( Hom  `  d
) z ) ( ( x g z ) `  ( n ( <. x ,  y
>. (comp `  d )
z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. (comp `  e )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) ) } )
71 ovex 6678 . . . . . . 7  |-  ( C  ^m  B )  e. 
_V
72 snex 4908 . . . . . . . 8  |-  { f }  e.  _V
73 ovex 6678 . . . . . . . . . 10  |-  ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
)  e.  _V
7473rgenw 2924 . . . . . . . . 9  |-  A. z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  e.  _V
75 ixpexg 7932 . . . . . . . . 9  |-  ( A. z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
)  e.  _V  ->  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
)  e.  _V )
7674, 75ax-mp 5 . . . . . . . 8  |-  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  e.  _V
7772, 76xpex 6962 . . . . . . 7  |-  ( { f }  X.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  e.  _V
7871, 77iunex 7147 . . . . . 6  |-  U_ f  e.  ( C  ^m  B
) ( { f }  X.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  e.  _V
79 simpl 473 . . . . . . . . . 10  |-  ( ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )  ->  ( f  e.  ( C  ^m  B
)  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) ) ) )
8079anim2i 593 . . . . . . . . 9  |-  ( ( d  =  <. f ,  g >.  /\  (
( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) )  ->  (
d  =  <. f ,  g >.  /\  (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) ) ) )
81802eximi 1763 . . . . . . . 8  |-  ( E. f E. g ( d  =  <. f ,  g >.  /\  (
( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) )  ->  E. f E. g ( d  = 
<. f ,  g >.  /\  ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) ) ) )
82 elopab 4983 . . . . . . . 8  |-  ( d  e.  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }  <->  E. f E. g ( d  = 
<. f ,  g >.  /\  ( ( f  e.  ( C  ^m  B
)  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) ) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) ) )
83 eliunxp 5259 . . . . . . . 8  |-  ( d  e.  U_ f  e.  ( C  ^m  B
) ( { f }  X.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  <->  E. f E. g
( d  =  <. f ,  g >.  /\  (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) ) ) )
8481, 82, 833imtr4i 281 . . . . . . 7  |-  ( d  e.  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }  ->  d  e.  U_ f  e.  ( C  ^m  B ) ( { f }  X.  X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) ) )
8584ssriv 3607 . . . . . 6  |-  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }  C_  U_ f  e.  ( C  ^m  B
) ( { f }  X.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
8678, 85ssexi 4803 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }  e.  _V
8769, 70, 86ovmpt2a 6791 . . . 4  |-  ( ( D  e.  Cat  /\  E  e.  Cat )  ->  ( D  Func  E
)  =  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } )
881, 2, 87syl2anc 693 . . 3  |-  ( ph  ->  ( D  Func  E
)  =  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } )
8988breqd 4664 . 2  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  F { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )  /\  A. x  e.  B  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } G ) )
90 brabv 6699 . . . 4  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } G  ->  ( F  e.  _V  /\  G  e. 
_V ) )
91 elex 3212 . . . . . 6  |-  ( F  e.  ( C  ^m  B )  ->  F  e.  _V )
92 elex 3212 . . . . . 6  |-  ( G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  ->  G  e.  _V )
9391, 92anim12i 590 . . . . 5  |-  ( ( F  e.  ( C  ^m  B )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  ->  ( F  e.  _V  /\  G  e. 
_V ) )
94933adant3 1081 . . . 4  |-  ( ( F  e.  ( C  ^m  B )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )  -> 
( F  e.  _V  /\  G  e.  _V )
)
95 simpl 473 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
9695eleq1d 2686 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f  e.  ( C  ^m  B )  <-> 
F  e.  ( C  ^m  B ) ) )
97 simpr 477 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
9895fveq1d 6193 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  ( 1st `  z ) )  =  ( F `  ( 1st `  z ) ) )
9995fveq1d 6193 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  ( 2nd `  z ) )  =  ( F `  ( 2nd `  z ) ) )
10098, 99oveq12d 6668 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  =  ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) ) )
101100oveq1d 6665 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  =  ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )
102101ixpeq2dv 7924 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  -> 
X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  = 
X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )
10397, 102eleq12d 2695 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
)  <->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) ) )
10497oveqd 6667 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g x )  =  ( x G x ) )
105104fveq1d 6193 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( x g x ) `  (  .1.  `  x ) )  =  ( ( x G x ) `  (  .1.  `  x )
) )
10695fveq1d 6193 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  x
)  =  ( F `
 x ) )
107106fveq2d 6195 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( I `  (
f `  x )
)  =  ( I `
 ( F `  x ) ) )
108105, 107eqeq12d 2637 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( x g x ) `  (  .1.  `  x )
)  =  ( I `
 ( f `  x ) )  <->  ( (
x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
) ) )
10997oveqd 6667 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g z )  =  ( x G z ) )
110109fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( x g z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) ) )
11195fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  y
)  =  ( F `
 y ) )
112106, 111opeq12d 4410 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  g  =  G )  -> 
<. ( f `  x
) ,  ( f `
 y ) >.  =  <. ( F `  x ) ,  ( F `  y )
>. )
11395fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  z
)  =  ( F `
 z ) )
114112, 113oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  g  =  G )  ->  ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) )  =  ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) )
11597oveqd 6667 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  g  =  G )  ->  ( y g z )  =  ( y G z ) )
116115fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( y g z ) `  n
)  =  ( ( y G z ) `
 n ) )
11797oveqd 6667 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
118117fveq1d 6193 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( x g y ) `  m
)  =  ( ( x G y ) `
 m ) )
119114, 116, 118oveq123d 6671 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( y g z ) `  n ) ( <.
( f `  x
) ,  ( f `
 y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) )
120110, 119eqeq12d 2637 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) )  <->  ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
1211202ralbidv 2989 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) )  <->  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y G z ) `
 n ) (
<. ( F `  x
) ,  ( F `
 y ) >. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
1221212ralbidv 2989 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) )  <->  A. y  e.  B  A. z  e.  B  A. m  e.  (
x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  (
n ( <. x ,  y >.  .x.  z
) m ) )  =  ( ( ( y G z ) `
 n ) (
<. ( F `  x
) ,  ( F `
 y ) >. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
123108, 122anbi12d 747 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) )  <->  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) )
124123ralbidv 2986 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) )  <->  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) )
12596, 103, 1243anbi123d 1399 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f  e.  ( C  ^m  B
)  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )  <->  ( F  e.  ( C  ^m  B
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
12666, 125syl5bbr 274 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )  /\  A. x  e.  B  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) )  <->  ( F  e.  ( C  ^m  B
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
127 eqid 2622 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `
 ( 1st `  z
) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z ) ) )  /\  A. x  e.  B  ( ( ( x g x ) `
 (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) }
128126, 127brabga 4989 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( ( f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B ) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )  /\  A. x  e.  B  (
( ( x g x ) `  (  .1.  `  x ) )  =  ( I `  ( f `  x
) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n
) ( <. (
f `  x ) ,  ( f `  y ) >. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } G  <->  ( F  e.  ( C  ^m  B
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
12990, 94, 128pm5.21nii 368 . . 3  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } G  <->  ( F  e.  ( C  ^m  B
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) )
13015, 17elmap 7886 . . . 4  |-  ( F  e.  ( C  ^m  B )  <->  F : B
--> C )
1311303anbi1i 1253 . . 3  |-  ( ( F  e.  ( C  ^m  B )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )  <->  ( F : B --> C  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) )
132129, 131bitri 264 . 2  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( C  ^m  B )  /\  g  e.  X_ z  e.  ( B  X.  B
) ( ( ( f `  ( 1st `  z ) ) J ( f `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )  /\  A. x  e.  B  ( (
( x g x ) `  (  .1.  `  x ) )  =  ( I `  (
f `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x g z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y g z ) `  n ) ( <. ( f `  x ) ,  ( f `  y )
>. O ( f `  z ) ) ( ( x g y ) `  m ) ) ) ) } G  <->  ( F : B
--> C  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) )
13389, 132syl6bb 276 1  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> C  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435   {csn 4177   <.cop 4183   U_ciun 4520   class class class wbr 4653   {copab 4712    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ixp 7909  df-func 16518
This theorem is referenced by:  isfuncd  16525  funcf1  16526  funcixp  16527  funcid  16530  funcco  16531  idfucl  16541  cofucl  16548  funcres2b  16557  funcpropd  16560
  Copyright terms: Public domain W3C validator