Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funline Structured version   Visualization version   Unicode version

Theorem funline 32249
Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funline  |-  Fun Line

Proof of Theorem funline
Dummy variables  a 
b  k  l  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3107 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  ( ( a  e.  ( EE `  m
)  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  <-> 
( E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  a  =/=  b )  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  E. m  e.  NN  (
( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) ) )
2 eqtr3 2643 . . . . . . . . 9  |-  ( ( l  =  [ <. a ,  b >. ] `'  Colinear  /\  k  =  [ <. a ,  b >. ] `'  Colinear  )  ->  l  =  k )
32ad2ant2l 782 . . . . . . . 8  |-  ( ( ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  ( ( a  e.  ( EE `  m
)  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k )
43a1i 11 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  NN )  ->  ( ( ( ( a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b )  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  ( ( a  e.  ( EE `  m
)  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k ) )
54rexlimivv 3036 . . . . . 6  |-  ( E. n  e.  NN  E. m  e.  NN  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  ( ( a  e.  ( EE `  m
)  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k )
61, 5sylbir 225 . . . . 5  |-  ( ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  E. m  e.  NN  (
( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k )
76gen2 1723 . . . 4  |-  A. l A. k ( ( E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  E. m  e.  NN  (
( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k )
8 eqeq1 2626 . . . . . . . 8  |-  ( l  =  k  ->  (
l  =  [ <. a ,  b >. ] `'  Colinear  <->  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )
98anbi2d 740 . . . . . . 7  |-  ( l  =  k  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  ( (
a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b )  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) ) )
109rexbidv 3052 . . . . . 6  |-  ( l  =  k  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  a  =/=  b )  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) ) )
11 fveq2 6191 . . . . . . . . . 10  |-  ( n  =  m  ->  ( EE `  n )  =  ( EE `  m
) )
1211eleq2d 2687 . . . . . . . . 9  |-  ( n  =  m  ->  (
a  e.  ( EE
`  n )  <->  a  e.  ( EE `  m ) ) )
1311eleq2d 2687 . . . . . . . . 9  |-  ( n  =  m  ->  (
b  e.  ( EE
`  n )  <->  b  e.  ( EE `  m ) ) )
1412, 133anbi12d 1400 . . . . . . . 8  |-  ( n  =  m  ->  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  <->  ( a  e.  ( EE `  m
)  /\  b  e.  ( EE `  m )  /\  a  =/=  b
) ) )
1514anbi1d 741 . . . . . . 7  |-  ( n  =  m  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  ( (
a  e.  ( EE
`  m )  /\  b  e.  ( EE `  m )  /\  a  =/=  b )  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) ) )
1615cbvrexv 3172 . . . . . 6  |-  ( E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  E. m  e.  NN  ( ( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m
)  /\  a  =/=  b )  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )
1710, 16syl6bb 276 . . . . 5  |-  ( l  =  k  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  E. m  e.  NN  ( ( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m
)  /\  a  =/=  b )  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) ) )
1817mo4 2517 . . . 4  |-  ( E* l E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  a  =/=  b )  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  A. l A. k ( ( E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  /\  E. m  e.  NN  (
( a  e.  ( EE `  m )  /\  b  e.  ( EE `  m )  /\  a  =/=  b
)  /\  k  =  [ <. a ,  b
>. ] `'  Colinear  ) )  ->  l  =  k ) )
197, 18mpbir 221 . . 3  |-  E* l E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )
2019funoprab 6760 . 2  |-  Fun  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }
21 df-line2 32244 . . 3  |- Line  =  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }
2221funeqi 5909 . 2  |-  ( Fun Line  <->  Fun 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
2320, 22mpbir 221 1  |-  Fun Line
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794   E.wrex 2913   <.cop 4183   `'ccnv 5113   Fun wfun 5882   ` cfv 5888   {coprab 6651   [cec 7740   NNcn 11020   EEcee 25768    Colinear ccolin 32144  Linecline2 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-iota 5851  df-fun 5890  df-fv 5896  df-oprab 6654  df-line2 32244
This theorem is referenced by:  fvline  32251
  Copyright terms: Public domain W3C validator