Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   Unicode version

Theorem fvline 32251
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  |  x  Colinear  <. A ,  B >. } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    N( x)

Proof of Theorem fvline
Dummy variables  a 
b  l  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear
2 fveq2 6191 . . . . . . . . 9  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
32eleq2d 2687 . . . . . . . 8  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
42eleq2d 2687 . . . . . . . 8  |-  ( n  =  N  ->  ( B  e.  ( EE `  n )  <->  B  e.  ( EE `  N ) ) )
53, 43anbi12d 1400 . . . . . . 7  |-  ( n  =  N  ->  (
( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
) ) )
65anbi1d 741 . . . . . 6  |-  ( n  =  N  ->  (
( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
76rspcev 3309 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )
81, 7mpanr2 720 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) )
9 simpr1 1067 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  A  e.  ( EE `  N ) )
10 simpr2 1068 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  B  e.  ( EE `  N ) )
11 colinearex 32167 . . . . . . . 8  |-  Colinear  e.  _V
1211cnvex 7113 . . . . . . 7  |-  `'  Colinear  e. 
_V
13 ecexg 7746 . . . . . . 7  |-  ( `'  Colinear 
e.  _V  ->  [ <. A ,  B >. ] `'  Colinear  e. 
_V )
1412, 13ax-mp 5 . . . . . 6  |-  [ <. A ,  B >. ] `'  Colinear  e. 
_V
15 eleq1 2689 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
16 neeq1 2856 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  =/=  b  <->  A  =/=  b ) )
1715, 163anbi13d 1401 . . . . . . . . 9  |-  ( a  =  A  ->  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  <->  ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
) ) )
18 opeq1 4402 . . . . . . . . . . 11  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
1918eceq1d 7783 . . . . . . . . . 10  |-  ( a  =  A  ->  [ <. a ,  b >. ] `'  Colinear  =  [ <. A ,  b
>. ] `'  Colinear  )
2019eqeq2d 2632 . . . . . . . . 9  |-  ( a  =  A  ->  (
l  =  [ <. a ,  b >. ] `'  Colinear  <->  l  =  [ <. A ,  b
>. ] `'  Colinear  ) )
2117, 20anbi12d 747 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  A  =/=  b )  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  ) ) )
2221rexbidv 3052 . . . . . . 7  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  A  =/=  b )  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  ) ) )
23 eleq1 2689 . . . . . . . . . 10  |-  ( b  =  B  ->  (
b  e.  ( EE
`  n )  <->  B  e.  ( EE `  n ) ) )
24 neeq2 2857 . . . . . . . . . 10  |-  ( b  =  B  ->  ( A  =/=  b  <->  A  =/=  B ) )
2523, 243anbi23d 1402 . . . . . . . . 9  |-  ( b  =  B  ->  (
( A  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  <->  ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
) ) )
26 opeq2 4403 . . . . . . . . . . 11  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
2726eceq1d 7783 . . . . . . . . . 10  |-  ( b  =  B  ->  [ <. A ,  b >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  )
2827eqeq2d 2632 . . . . . . . . 9  |-  ( b  =  B  ->  (
l  =  [ <. A ,  b >. ] `'  Colinear  <->  l  =  [ <. A ,  B >. ] `'  Colinear  ) )
2925, 28anbi12d 747 . . . . . . . 8  |-  ( b  =  B  ->  (
( ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3029rexbidv 3052 . . . . . . 7  |-  ( b  =  B  ->  ( E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  A  =/=  b
)  /\  l  =  [ <. A ,  b
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
31 eqeq1 2626 . . . . . . . . 9  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( l  =  [ <. A ,  B >. ] `' 
Colinear  <->  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `' 
Colinear  ) )
3231anbi2d 740 . . . . . . . 8  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3332rexbidv 3052 . . . . . . 7  |-  ( l  =  [ <. A ,  B >. ] `'  Colinear  -> 
( E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  l  =  [ <. A ,  B >. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  B  e.  ( EE `  n
)  /\  A  =/=  B )  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3422, 30, 33eloprabg 6748 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  [ <. A ,  B >. ] `' 
Colinear  e.  _V )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
3514, 34mp3an3 1413 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
369, 10, 35syl2anc 693 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  B  e.  ( EE `  n )  /\  A  =/=  B
)  /\  [ <. A ,  B >. ] `'  Colinear  =  [ <. A ,  B >. ] `'  Colinear  ) ) )
378, 36mpbird 247 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
38 df-ov 6653 . . . 4  |-  ( ALine B )  =  (Line `  <. A ,  B >. )
39 df-br 4654 . . . . . 6  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. Line
)
40 df-line2 32244 . . . . . . 7  |- Line  =  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }
4140eleq2i 2693 . . . . . 6  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. Line  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
4239, 41bitri 264 . . . . 5  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  <->  <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e. 
{ <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) } )
43 funline 32249 . . . . . 6  |-  Fun Line
44 funbrfv 6234 . . . . . 6  |-  ( Fun Line  ->  ( <. A ,  B >.Line [ <. A ,  B >. ] `'  Colinear  ->  (Line ` 
<. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  ) )
4543, 44ax-mp 5 . . . . 5  |-  ( <. A ,  B >.Line [
<. A ,  B >. ] `' 
Colinear  ->  (Line `  <. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  )
4642, 45sylbir 225 . . . 4  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  ->  (Line `  <. A ,  B >. )  =  [ <. A ,  B >. ] `'  Colinear  )
4738, 46syl5eq 2668 . . 3  |-  ( <. <. A ,  B >. ,  [ <. A ,  B >. ] `'  Colinear  >.  e.  { <. <. a ,  b
>. ,  l >.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }  ->  ( ALine B
)  =  [ <. A ,  B >. ] `'  Colinear  )
4837, 47syl 17 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  [ <. A ,  B >. ] `'  Colinear  )
49 opex 4932 . . . 4  |-  <. A ,  B >.  e.  _V
50 dfec2 7745 . . . 4  |-  ( <. A ,  B >.  e. 
_V  ->  [ <. A ,  B >. ] `'  Colinear  =  { x  |  <. A ,  B >. `'  Colinear  x } )
5149, 50ax-mp 5 . . 3  |-  [ <. A ,  B >. ] `'  Colinear  =  { x  |  <. A ,  B >. `'  Colinear  x }
52 vex 3203 . . . . 5  |-  x  e. 
_V
5349, 52brcnv 5305 . . . 4  |-  ( <. A ,  B >. `'  Colinear  x  <->  x  Colinear  <. A ,  B >. )
5453abbii 2739 . . 3  |-  { x  |  <. A ,  B >. `' 
Colinear  x }  =  {
x  |  x  Colinear  <. A ,  B >. }
5551, 54eqtri 2644 . 2  |-  [ <. A ,  B >. ] `'  Colinear  =  { x  |  x 
Colinear 
<. A ,  B >. }
5648, 55syl6eq 2672 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  |  x  Colinear  <. A ,  B >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   _Vcvv 3200   <.cop 4183   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   {coprab 6651   [cec 7740   NNcn 11020   EEcee 25768    Colinear ccolin 32144  Linecline2 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-ec 7744  df-nn 11021  df-colinear 32146  df-line2 32244
This theorem is referenced by:  liness  32252  fvline2  32253  ellines  32259
  Copyright terms: Public domain W3C validator