| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > linedegen | Structured version Visualization version Unicode version | ||
| Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| linedegen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6653 |
. 2
| |
| 2 | neirr 2803 |
. . . . . . . . . . 11
| |
| 3 | simp3 1063 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | mto 188 |
. . . . . . . . . 10
|
| 5 | 4 | intnanr 961 |
. . . . . . . . 9
|
| 6 | 5 | a1i 11 |
. . . . . . . 8
|
| 7 | 6 | nrex 3000 |
. . . . . . 7
|
| 8 | 7 | nex 1731 |
. . . . . 6
|
| 9 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 10 | neeq1 2856 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | 3anbi13d 1401 |
. . . . . . . . . . 11
|
| 12 | opeq1 4402 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | eceq1d 7783 |
. . . . . . . . . . . 12
|
| 14 | 13 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 15 | 11, 14 | anbi12d 747 |
. . . . . . . . . 10
|
| 16 | 15 | rexbidv 3052 |
. . . . . . . . 9
|
| 17 | 16 | exbidv 1850 |
. . . . . . . 8
|
| 18 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 19 | neeq2 2857 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | 3anbi23d 1402 |
. . . . . . . . . . 11
|
| 21 | opeq2 4403 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eceq1d 7783 |
. . . . . . . . . . . 12
|
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | anbi12d 747 |
. . . . . . . . . 10
|
| 25 | 24 | rexbidv 3052 |
. . . . . . . . 9
|
| 26 | 25 | exbidv 1850 |
. . . . . . . 8
|
| 27 | 17, 26 | opelopabg 4993 |
. . . . . . 7
|
| 28 | 27 | anidms 677 |
. . . . . 6
|
| 29 | 8, 28 | mtbiri 317 |
. . . . 5
|
| 30 | elopaelxp 5191 |
. . . . . . 7
| |
| 31 | opelxp1 5150 |
. . . . . . 7
| |
| 32 | 30, 31 | syl 17 |
. . . . . 6
|
| 33 | 32 | con3i 150 |
. . . . 5
|
| 34 | 29, 33 | pm2.61i 176 |
. . . 4
|
| 35 | df-line2 32244 |
. . . . . . 7
| |
| 36 | 35 | dmeqi 5325 |
. . . . . 6
|
| 37 | dmoprab 6741 |
. . . . . 6
| |
| 38 | 36, 37 | eqtri 2644 |
. . . . 5
|
| 39 | 38 | eleq2i 2693 |
. . . 4
|
| 40 | 34, 39 | mtbir 313 |
. . 3
|
| 41 | ndmfv 6218 |
. . 3
| |
| 42 | 40, 41 | ax-mp 5 |
. 2
|
| 43 | 1, 42 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-ec 7744 df-line2 32244 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |