Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linedegen Structured version   Visualization version   Unicode version

Theorem linedegen 32250
Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linedegen  |-  ( ALine A )  =  (/)

Proof of Theorem linedegen
Dummy variables  l  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( ALine A )  =  (Line `  <. A ,  A >. )
2 neirr 2803 . . . . . . . . . . 11  |-  -.  A  =/=  A
3 simp3 1063 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A )  ->  A  =/=  A )
42, 3mto 188 . . . . . . . . . 10  |-  -.  ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )
54intnanr 961 . . . . . . . . 9  |-  -.  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
65a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  -.  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
76nrex 3000 . . . . . . 7  |-  -.  E. n  e.  NN  (
( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
87nex 1731 . . . . . 6  |-  -.  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  )
9 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
10 neeq1 2856 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
x  =/=  y  <->  A  =/=  y ) )
119, 103anbi13d 1401 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
) ) )
12 opeq1 4402 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
1312eceq1d 7783 . . . . . . . . . . . 12  |-  ( x  =  A  ->  [ <. x ,  y >. ] `'  Colinear  =  [ <. A ,  y
>. ] `'  Colinear  )
1413eqeq2d 2632 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
l  =  [ <. x ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  y
>. ] `'  Colinear  ) )
1511, 14anbi12d 747 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1615rexbidv 3052 . . . . . . . . 9  |-  ( x  =  A  ->  ( E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
1716exbidv 1850 . . . . . . . 8  |-  ( x  =  A  ->  ( E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  ) ) )
18 eleq1 2689 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
y  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
19 neeq2 2857 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( A  =/=  y  <->  A  =/=  A ) )
2018, 193anbi23d 1402 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  <->  ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
) ) )
21 opeq2 4403 . . . . . . . . . . . . 13  |-  ( y  =  A  ->  <. A , 
y >.  =  <. A ,  A >. )
2221eceq1d 7783 . . . . . . . . . . . 12  |-  ( y  =  A  ->  [ <. A ,  y >. ] `'  Colinear  =  [ <. A ,  A >. ] `'  Colinear  )
2322eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
l  =  [ <. A ,  y >. ] `'  Colinear  <->  l  =  [ <. A ,  A >. ] `'  Colinear  ) )
2420, 23anbi12d 747 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2524rexbidv 3052 . . . . . . . . 9  |-  ( y  =  A  ->  ( E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  A  =/=  y
)  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2625exbidv 1850 . . . . . . . 8  |-  ( y  =  A  ->  ( E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  A  =/=  y )  /\  l  =  [ <. A ,  y
>. ] `'  Colinear  )  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  A  =/=  A
)  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2717, 26opelopabg 4993 . . . . . . 7  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
2827anidms 677 . . . . . 6  |-  ( A  e.  _V  ->  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  <->  E. l E. n  e.  NN  ( ( A  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  A  =/=  A )  /\  l  =  [ <. A ,  A >. ] `'  Colinear  ) ) )
298, 28mtbiri 317 . . . . 5  |-  ( A  e.  _V  ->  -.  <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
30 elopaelxp 5191 . . . . . . 7  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  <. A ,  A >.  e.  ( _V  X.  _V ) )
31 opelxp1 5150 . . . . . . 7  |-  ( <. A ,  A >.  e.  ( _V  X.  _V )  ->  A  e.  _V )
3230, 31syl 17 . . . . . 6  |-  ( <. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  ->  A  e.  _V )
3332con3i 150 . . . . 5  |-  ( -.  A  e.  _V  ->  -. 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
3429, 33pm2.61i 176 . . . 4  |-  -.  <. A ,  A >.  e.  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
35 df-line2 32244 . . . . . . 7  |- Line  =  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3635dmeqi 5325 . . . . . 6  |-  dom Line  =  dom  {
<. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
37 dmoprab 6741 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  l >.  |  E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3836, 37eqtri 2644 . . . . 5  |-  dom Line  =  { <. x ,  y >.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n )  /\  y  e.  ( EE `  n
)  /\  x  =/=  y )  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) }
3938eleq2i 2693 . . . 4  |-  ( <. A ,  A >.  e. 
dom Line 
<-> 
<. A ,  A >.  e. 
{ <. x ,  y
>.  |  E. l E. n  e.  NN  ( ( x  e.  ( EE `  n
)  /\  y  e.  ( EE `  n )  /\  x  =/=  y
)  /\  l  =  [ <. x ,  y
>. ] `'  Colinear  ) } )
4034, 39mtbir 313 . . 3  |-  -.  <. A ,  A >.  e.  dom Line
41 ndmfv 6218 . . 3  |-  ( -. 
<. A ,  A >.  e. 
dom Line  ->  (Line `  <. A ,  A >. )  =  (/) )
4240, 41ax-mp 5 . 2  |-  (Line `  <. A ,  A >. )  =  (/)
431, 42eqtri 2644 1  |-  ( ALine A )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200   (/)c0 3915   <.cop 4183   {copab 4712    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ` cfv 5888  (class class class)co 6650   {coprab 6651   [cec 7740   NNcn 11020   EEcee 25768    Colinear ccolin 32144  Linecline2 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-oprab 6654  df-ec 7744  df-line2 32244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator