Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvray Structured version   Visualization version   Unicode version

Theorem fvray 32248
Description: Calculate the value of the Ray function. (Contributed by Scott Fenton, 21-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvray  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( PRay A )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
Distinct variable groups:    x, A    x, N    x, P

Proof of Theorem fvray
Dummy variables  a  n  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( PRay A )  =  (Ray
`  <. P ,  A >. )
2 eqid 2622 . . . . 5  |-  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }
3 fveq2 6191 . . . . . . . . 9  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
43eleq2d 2687 . . . . . . . 8  |-  ( n  =  N  ->  ( P  e.  ( EE `  n )  <->  P  e.  ( EE `  N ) ) )
53eleq2d 2687 . . . . . . . 8  |-  ( n  =  N  ->  ( A  e.  ( EE `  n )  <->  A  e.  ( EE `  N ) ) )
64, 53anbi12d 1400 . . . . . . 7  |-  ( n  =  N  ->  (
( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  <->  ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  P  =/=  A
) ) )
7 rabeq 3192 . . . . . . . . 9  |-  ( ( EE `  n )  =  ( EE `  N )  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
83, 7syl 17 . . . . . . . 8  |-  ( n  =  N  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
98eqeq2d 2632 . . . . . . 7  |-  ( n  =  N  ->  ( { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. }  =  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  <->  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) )
106, 9anbi12d 747 . . . . . 6  |-  ( n  =  N  ->  (
( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } )  <->  ( ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) ) )
1110rspcev 3309 . . . . 5  |-  ( ( N  e.  NN  /\  ( ( P  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } ) )  ->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
122, 11mpanr2 720 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
13 simpr1 1067 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  P  e.  ( EE `  N ) )
14 simpr2 1068 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  A  e.  ( EE `  N ) )
15 fvex 6201 . . . . . . 7  |-  ( EE
`  N )  e. 
_V
1615rabex 4813 . . . . . 6  |-  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  e.  _V
17 eleq1 2689 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p  e.  ( EE
`  n )  <->  P  e.  ( EE `  n ) ) )
18 neeq1 2856 . . . . . . . . . 10  |-  ( p  =  P  ->  (
p  =/=  a  <->  P  =/=  a ) )
1917, 183anbi13d 1401 . . . . . . . . 9  |-  ( p  =  P  ->  (
( p  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  <->  ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
) ) )
20 breq1 4656 . . . . . . . . . . 11  |-  ( p  =  P  ->  (
pOutsideOf <. a ,  x >.  <-> 
POutsideOf <. a ,  x >. ) )
2120rabbidv 3189 . . . . . . . . . 10  |-  ( p  =  P  ->  { x  e.  ( EE `  n
)  |  pOutsideOf <. a ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. a ,  x >. } )
2221eqeq2d 2632 . . . . . . . . 9  |-  ( p  =  P  ->  (
r  =  { x  e.  ( EE `  n
)  |  pOutsideOf <. a ,  x >. }  <->  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) )
2319, 22anbi12d 747 . . . . . . . 8  |-  ( p  =  P  ->  (
( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n
)  /\  P  =/=  a )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) ) )
2423rexbidv 3052 . . . . . . 7  |-  ( p  =  P  ->  ( E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n
)  /\  P  =/=  a )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } ) ) )
25 eleq1 2689 . . . . . . . . . 10  |-  ( a  =  A  ->  (
a  e.  ( EE
`  n )  <->  A  e.  ( EE `  n ) ) )
26 neeq2 2857 . . . . . . . . . 10  |-  ( a  =  A  ->  ( P  =/=  a  <->  P  =/=  A ) )
2725, 263anbi23d 1402 . . . . . . . . 9  |-  ( a  =  A  ->  (
( P  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  <->  ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
) ) )
28 opeq1 4402 . . . . . . . . . . . 12  |-  ( a  =  A  ->  <. a ,  x >.  =  <. A ,  x >. )
2928breq2d 4665 . . . . . . . . . . 11  |-  ( a  =  A  ->  ( POutsideOf
<. a ,  x >.  <->  POutsideOf <. A ,  x >. ) )
3029rabbidv 3189 . . . . . . . . . 10  |-  ( a  =  A  ->  { x  e.  ( EE `  n
)  |  POutsideOf <. a ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } )
3130eqeq2d 2632 . . . . . . . . 9  |-  ( a  =  A  ->  (
r  =  { x  e.  ( EE `  n
)  |  POutsideOf <. a ,  x >. }  <->  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) )
3227, 31anbi12d 747 . . . . . . . 8  |-  ( a  =  A  ->  (
( ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) ) )
3332rexbidv 3052 . . . . . . 7  |-  ( a  =  A  ->  ( E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  P  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. a ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } ) ) )
34 eqeq1 2626 . . . . . . . . 9  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  (
r  =  { x  e.  ( EE `  n
)  |  POutsideOf <. A ,  x >. }  <->  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) )
3534anbi2d 740 . . . . . . . 8  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  (
( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } )  <->  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3635rexbidv 3052 . . . . . . 7  |-  ( r  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  ->  ( E. n  e.  NN  ( ( P  e.  ( EE `  n
)  /\  A  e.  ( EE `  n )  /\  P  =/=  A
)  /\  r  =  { x  e.  ( EE `  n )  |  POutsideOf <. A ,  x >. } )  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3724, 33, 36eloprabg 6748 . . . . . 6  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  e.  _V )  ->  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3816, 37mp3an3 1413 . . . . 5  |-  ( ( P  e.  ( EE
`  N )  /\  A  e.  ( EE `  N ) )  -> 
( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
3913, 14, 38syl2anc 693 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  <->  E. n  e.  NN  ( ( P  e.  ( EE `  n )  /\  A  e.  ( EE `  n
)  /\  P  =/=  A )  /\  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. }  =  {
x  e.  ( EE
`  n )  |  POutsideOf <. A ,  x >. } ) ) )
4012, 39mpbird 247 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  ->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
41 df-br 4654 . . . . 5  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e. Ray )
42 df-ray 32245 . . . . . 6  |- Ray  =  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }
4342eleq2i 2693 . . . . 5  |-  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } >.  e. Ray  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
4441, 43bitri 264 . . . 4  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  <->  <. <. P ,  A >. ,  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } >.  e.  { <. <. p ,  a
>. ,  r >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) } )
45 funray 32247 . . . . 5  |-  Fun Ray
46 funbrfv 6234 . . . . 5  |-  ( Fun Ray  ->  ( <. P ,  A >.Ray { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. }  ->  (Ray `  <. P ,  A >. )  =  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } ) )
4745, 46ax-mp 5 . . . 4  |-  ( <. P ,  A >.Ray { x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. }  ->  (Ray `  <. P ,  A >. )  =  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } )
4844, 47sylbir 225 . . 3  |-  ( <. <. P ,  A >. ,  { x  e.  ( EE `  N )  |  POutsideOf <. A ,  x >. } >.  e.  { <. <.
p ,  a >. ,  r >.  |  E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  p  =/=  a
)  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }  ->  (Ray
`  <. P ,  A >. )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
4940, 48syl 17 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
(Ray `  <. P ,  A >. )  =  {
x  e.  ( EE
`  N )  |  POutsideOf <. A ,  x >. } )
501, 49syl5eq 2668 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  P  =/=  A ) )  -> 
( PRay A )  =  { x  e.  ( EE `  N
)  |  POutsideOf <. A ,  x >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200   <.cop 4183   class class class wbr 4653   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   {coprab 6651   NNcn 11020   EEcee 25768  OutsideOfcoutsideof 32226  Raycray 32242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fz 12327  df-ee 25771  df-ray 32245
This theorem is referenced by:  lineunray  32254
  Copyright terms: Public domain W3C validator