Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   Unicode version

Theorem funpartfv 32052
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv  |-  (Funpart F `  A )  =  ( F `  A )

Proof of Theorem funpartfv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-funpart 31981 . . 3  |- Funpart F  =  ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) )
21fveq1i 6192 . 2  |-  (Funpart F `  A )  =  ( ( F  |`  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) `
 A )
3 fvres 6207 . . 3  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) `  A
)  =  ( F `
 A ) )
4 nfvres 6224 . . . 4  |-  ( -.  A  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) `  A
)  =  (/) )
5 funpartlem 32049 . . . . . . . . 9  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E. x
( F " { A } )  =  {
x } )
6 eusn 4265 . . . . . . . . 9  |-  ( E! x  x  e.  ( F " { A } )  <->  E. x
( F " { A } )  =  {
x } )
75, 6bitr4i 267 . . . . . . . 8  |-  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E! x  x  e.  ( F " { A } ) )
8 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
9 elimasng 5491 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  x  e.  _V )  ->  ( x  e.  ( F " { A } )  <->  <. A ,  x >.  e.  F ) )
108, 9mpan2 707 . . . . . . . . . 10  |-  ( A  e.  _V  ->  (
x  e.  ( F
" { A }
)  <->  <. A ,  x >.  e.  F ) )
11 df-br 4654 . . . . . . . . . 10  |-  ( A F x  <->  <. A ,  x >.  e.  F )
1210, 11syl6bbr 278 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
x  e.  ( F
" { A }
)  <->  A F x ) )
1312eubidv 2490 . . . . . . . 8  |-  ( A  e.  _V  ->  ( E! x  x  e.  ( F " { A } )  <->  E! x  A F x ) )
147, 13syl5bb 272 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  e.  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  E! x  A F x ) )
1514notbid 308 . . . . . 6  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  <->  -.  E! x  A F x ) )
16 tz6.12-2 6182 . . . . . 6  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
1715, 16syl6bi 243 . . . . 5  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( F `  A
)  =  (/) ) )
18 fvprc 6185 . . . . . 6  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
1918a1d 25 . . . . 5  |-  ( -.  A  e.  _V  ->  ( -.  A  e.  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( F `  A
)  =  (/) ) )
2017, 19pm2.61i 176 . . . 4  |-  ( -.  A  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( F `  A
)  =  (/) )
214, 20eqtr4d 2659 . . 3  |-  ( -.  A  e.  dom  (
(Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) )  -> 
( ( F  |`  dom  ( (Image F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) `  A
)  =  ( F `
 A ) )
223, 21pm2.61i 176 . 2  |-  ( ( F  |`  dom  ( (Image
F  o. Singleton )  i^i  ( _V  X.  Singletons ) ) ) `
 A )  =  ( F `  A
)
232, 22eqtri 2644 1  |-  (Funpart F `  A )  =  ( F `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   _Vcvv 3200    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118   ` cfv 5888  Singletoncsingle 31945   Singletonscsingles 31946  Imagecimage 31947  Funpartcfunpart 31956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969  df-singles 31970  df-image 31971  df-funpart 31981
This theorem is referenced by:  fullfunfv  32054
  Copyright terms: Public domain W3C validator