Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresxr Structured version   Visualization version   Unicode version

Theorem limsupresxr 39998
Description: The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupresxr.1  |-  ( ph  ->  F  e.  V )
limsupresxr.2  |-  ( ph  ->  Fun  F )
limsupresxr.3  |-  A  =  ( `' F " RR* )
Assertion
Ref Expression
limsupresxr  |-  ( ph  ->  ( limsup `  ( F  |`  A ) )  =  ( limsup `  F )
)

Proof of Theorem limsupresxr
Dummy variables  x  k  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resimass 39449 . . . . . . . . 9  |-  ( ( F  |`  A ) " ( k [,) +oo ) )  C_  ( F " ( k [,) +oo ) )
21a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( F  |`  A ) " (
k [,) +oo )
)  C_  ( F " ( k [,) +oo ) ) )
32ssrind 39333 . . . . . . 7  |-  ( ph  ->  ( ( ( F  |`  A ) " (
k [,) +oo )
)  i^i  RR* )  C_  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )
4 limsupresxr.2 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
54funfnd 5919 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  dom  F
)
6 elinel1 3799 . . . . . . . . . . . 12  |-  ( y  e.  ( ( F
" ( k [,) +oo ) )  i^i  RR* )  ->  y  e.  ( F " ( k [,) +oo ) ) )
7 fvelima2 39475 . . . . . . . . . . . 12  |-  ( ( F  Fn  dom  F  /\  y  e.  ( F " ( k [,) +oo ) ) )  ->  E. x  e.  ( dom  F  i^i  ( k [,) +oo ) ) ( F `  x
)  =  y )
85, 6, 7syl2an 494 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  ->  E. x  e.  ( dom  F  i^i  ( k [,) +oo ) ) ( F `
 x )  =  y )
9 elinel1 3799 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( dom  F  i^i  ( k [,) +oo ) )  ->  x  e.  dom  F )
1093ad2ant2 1083 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  ->  x  e.  dom  F )
11 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  ( F `  x )  =  y )  -> 
( F `  x
)  =  y )
12 elinel2 3800 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( ( F
" ( k [,) +oo ) )  i^i  RR* )  ->  y  e.  RR* )
1312adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  ( F `  x )  =  y )  -> 
y  e.  RR* )
1411, 13eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  ( F `  x )  =  y )  -> 
( F `  x
)  e.  RR* )
15143adant2 1080 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  -> 
( F `  x
)  e.  RR* )
1610, 15jca 554 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  -> 
( x  e.  dom  F  /\  ( F `  x )  e.  RR* ) )
17163adant1l 1318 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  -> 
( x  e.  dom  F  /\  ( F `  x )  e.  RR* ) )
18 simp1l 1085 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  ->  ph )
19 elpreima 6337 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  Fn  dom  F  -> 
( x  e.  ( `' F " RR* )  <->  ( x  e.  dom  F  /\  ( F `  x
)  e.  RR* )
) )
205, 19syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  ( `' F " RR* )  <->  ( x  e.  dom  F  /\  ( F `  x
)  e.  RR* )
) )
2118, 20syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  -> 
( x  e.  ( `' F " RR* )  <->  ( x  e.  dom  F  /\  ( F `  x
)  e.  RR* )
) )
2217, 21mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  ->  x  e.  ( `' F " RR* ) )
23 limsupresxr.3 . . . . . . . . . . . . . . . . 17  |-  A  =  ( `' F " RR* )
2422, 23syl6eleqr 2712 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) )  /\  ( F `  x )  =  y )  ->  x  e.  A )
25243expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  x  e.  A )
2625fvresd 6208 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
( ( F  |`  A ) `  x
)  =  ( F `
 x ) )
27 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
( F `  x
)  =  y )
2826, 27eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
y  =  ( ( F  |`  A ) `  x ) )
29 simplll 798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  ph )
304funresd 39476 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  Fun  ( F  |`  A ) )
3129, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  Fun  ( F  |`  A ) )
329ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  x  e.  dom  F )
3325, 32elind 3798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  x  e.  ( A  i^i  dom  F ) )
34 dmres 5419 . . . . . . . . . . . . . . . 16  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
3533, 34syl6eleqr 2712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  x  e.  dom  ( F  |`  A ) )
3631, 35jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
( Fun  ( F  |`  A )  /\  x  e.  dom  ( F  |`  A ) ) )
37 elinel2 3800 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( dom  F  i^i  ( k [,) +oo ) )  ->  x  e.  ( k [,) +oo ) )
3837ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  ->  x  e.  ( k [,) +oo ) )
39 funfvima 6492 . . . . . . . . . . . . . 14  |-  ( ( Fun  ( F  |`  A )  /\  x  e.  dom  ( F  |`  A ) )  -> 
( x  e.  ( k [,) +oo )  ->  ( ( F  |`  A ) `  x
)  e.  ( ( F  |`  A ) " ( k [,) +oo ) ) ) )
4036, 38, 39sylc 65 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
( ( F  |`  A ) `  x
)  e.  ( ( F  |`  A ) " ( k [,) +oo ) ) )
4128, 40eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( ( F " ( k [,) +oo ) )  i^i  RR* ) )  /\  x  e.  ( dom  F  i^i  ( k [,) +oo ) ) )  /\  ( F `  x )  =  y )  -> 
y  e.  ( ( F  |`  A ) " ( k [,) +oo ) ) )
4241rexlimdva2 39339 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  ->  ( E. x  e.  ( dom  F  i^i  ( k [,) +oo ) ) ( F `  x
)  =  y  -> 
y  e.  ( ( F  |`  A ) " ( k [,) +oo ) ) ) )
438, 42mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )  ->  y  e.  ( ( F  |`  A ) " (
k [,) +oo )
) )
4443ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  ( ( F " (
k [,) +oo )
)  i^i  RR* ) y  e.  ( ( F  |`  A ) " (
k [,) +oo )
) )
45 dfss3 3592 . . . . . . . . 9  |-  ( ( ( F " (
k [,) +oo )
)  i^i  RR* )  C_  ( ( F  |`  A ) " (
k [,) +oo )
)  <->  A. y  e.  ( ( F " (
k [,) +oo )
)  i^i  RR* ) y  e.  ( ( F  |`  A ) " (
k [,) +oo )
) )
4644, 45sylibr 224 . . . . . . . 8  |-  ( ph  ->  ( ( F "
( k [,) +oo ) )  i^i  RR* )  C_  ( ( F  |`  A ) " (
k [,) +oo )
) )
47 inss2 3834 . . . . . . . . 9  |-  ( ( F " ( k [,) +oo ) )  i^i  RR* )  C_  RR*
4847a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( F "
( k [,) +oo ) )  i^i  RR* )  C_  RR* )
4946, 48ssind 3837 . . . . . . 7  |-  ( ph  ->  ( ( F "
( k [,) +oo ) )  i^i  RR* )  C_  ( ( ( F  |`  A ) " ( k [,) +oo ) )  i^i  RR* ) )
503, 49eqssd 3620 . . . . . 6  |-  ( ph  ->  ( ( ( F  |`  A ) " (
k [,) +oo )
)  i^i  RR* )  =  ( ( F "
( k [,) +oo ) )  i^i  RR* ) )
5150supeq1d 8352 . . . . 5  |-  ( ph  ->  sup ( ( ( ( F  |`  A )
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  =  sup ( ( ( F " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )
5251mpteq2dv 4745 . . . 4  |-  ( ph  ->  ( k  e.  RR  |->  sup ( ( ( ( F  |`  A ) " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
5352rneqd 5353 . . 3  |-  ( ph  ->  ran  ( k  e.  RR  |->  sup ( ( ( ( F  |`  A )
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ran  (
k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
5453infeq1d 8383 . 2  |-  ( ph  -> inf ( ran  ( k  e.  RR  |->  sup (
( ( ( F  |`  A ) " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) ) ,  RR* ,  <  )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
55 limsupresxr.1 . . . 4  |-  ( ph  ->  F  e.  V )
5655resexd 39321 . . 3  |-  ( ph  ->  ( F  |`  A )  e.  _V )
57 eqid 2622 . . . 4  |-  ( k  e.  RR  |->  sup (
( ( ( F  |`  A ) " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) )  =  ( k  e.  RR  |->  sup ( ( ( ( F  |`  A )
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
5857limsupval 14205 . . 3  |-  ( ( F  |`  A )  e.  _V  ->  ( limsup `  ( F  |`  A ) )  = inf ( ran  ( k  e.  RR  |->  sup ( ( ( ( F  |`  A ) " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
5956, 58syl 17 . 2  |-  ( ph  ->  ( limsup `  ( F  |`  A ) )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( ( F  |`  A ) " (
k [,) +oo )
)  i^i  RR* ) , 
RR* ,  <  ) ) ,  RR* ,  <  )
)
60 eqid 2622 . . . 4  |-  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )  =  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
6160limsupval 14205 . . 3  |-  ( F  e.  V  ->  ( limsup `
 F )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
6255, 61syl 17 . 2  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  RR  |->  sup (
( ( F "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
6354, 59, 623eqtr4d 2666 1  |-  ( ph  ->  ( limsup `  ( F  |`  A ) )  =  ( limsup `  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-limsup 14202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator