| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmptss | Structured version Visualization version Unicode version | ||
| Description: If all the values of the
mapping are subsets of a class |
| Ref | Expression |
|---|---|
| ovmptss.1 |
|
| Ref | Expression |
|---|---|
| ovmptss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmptss.1 |
. . . 4
| |
| 2 | mpt2mptsx 7233 |
. . . 4
| |
| 3 | 1, 2 | eqtri 2644 |
. . 3
|
| 4 | 3 | fvmptss 6292 |
. 2
|
| 5 | vex 3203 |
. . . . . . . 8
| |
| 6 | vex 3203 |
. . . . . . . 8
| |
| 7 | 5, 6 | op1std 7178 |
. . . . . . 7
|
| 8 | 7 | csbeq1d 3540 |
. . . . . 6
|
| 9 | 5, 6 | op2ndd 7179 |
. . . . . . . 8
|
| 10 | 9 | csbeq1d 3540 |
. . . . . . 7
|
| 11 | 10 | csbeq2dv 3992 |
. . . . . 6
|
| 12 | 8, 11 | eqtrd 2656 |
. . . . 5
|
| 13 | 12 | sseq1d 3632 |
. . . 4
|
| 14 | 13 | raliunxp 5261 |
. . 3
|
| 15 | nfcv 2764 |
. . . . 5
| |
| 16 | nfcv 2764 |
. . . . . 6
| |
| 17 | nfcsb1v 3549 |
. . . . . 6
| |
| 18 | 16, 17 | nfxp 5142 |
. . . . 5
|
| 19 | sneq 4187 |
. . . . . 6
| |
| 20 | csbeq1a 3542 |
. . . . . 6
| |
| 21 | 19, 20 | xpeq12d 5140 |
. . . . 5
|
| 22 | 15, 18, 21 | cbviun 4557 |
. . . 4
|
| 23 | 22 | raleqi 3142 |
. . 3
|
| 24 | nfv 1843 |
. . . 4
| |
| 25 | nfcsb1v 3549 |
. . . . . 6
| |
| 26 | nfcv 2764 |
. . . . . 6
| |
| 27 | 25, 26 | nfss 3596 |
. . . . 5
|
| 28 | 17, 27 | nfral 2945 |
. . . 4
|
| 29 | nfv 1843 |
. . . . . 6
| |
| 30 | nfcsb1v 3549 |
. . . . . . 7
| |
| 31 | nfcv 2764 |
. . . . . . 7
| |
| 32 | 30, 31 | nfss 3596 |
. . . . . 6
|
| 33 | csbeq1a 3542 |
. . . . . . 7
| |
| 34 | 33 | sseq1d 3632 |
. . . . . 6
|
| 35 | 29, 32, 34 | cbvral 3167 |
. . . . 5
|
| 36 | csbeq1a 3542 |
. . . . . . 7
| |
| 37 | 36 | sseq1d 3632 |
. . . . . 6
|
| 38 | 20, 37 | raleqbidv 3152 |
. . . . 5
|
| 39 | 35, 38 | syl5bb 272 |
. . . 4
|
| 40 | 24, 28, 39 | cbvral 3167 |
. . 3
|
| 41 | 14, 23, 40 | 3bitr4ri 293 |
. 2
|
| 42 | df-ov 6653 |
. . 3
| |
| 43 | 42 | sseq1i 3629 |
. 2
|
| 44 | 4, 41, 43 | 3imtr4i 281 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: relmpt2opab 7259 relxpchom 16821 reldv 23634 |
| Copyright terms: Public domain | W3C validator |