MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorb Structured version   Visualization version   Unicode version

Theorem gaorb 17740
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypothesis
Ref Expression
gaorb.1  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
gaorb  |-  ( A  .~  B  <->  ( A  e.  Y  /\  B  e.  Y  /\  E. h  e.  X  ( h  .(+) 
A )  =  B ) )
Distinct variable groups:    g, h, x, y, A    B, g, h, x, y    .~ , h    .(+) ,
g, h, x, y   
g, X, h, x, y    h, Y, x, y
Allowed substitution hints:    .~ ( x, y, g)    Y( g)

Proof of Theorem gaorb
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( x  =  A  ->  (
g  .(+)  x )  =  ( g  .(+)  A ) )
2 eqeq12 2635 . . . . . 6  |-  ( ( ( g  .(+)  x )  =  ( g  .(+)  A )  /\  y  =  B )  ->  (
( g  .(+)  x )  =  y  <->  ( g  .(+)  A )  =  B ) )
31, 2sylan 488 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( g  .(+)  x )  =  y  <->  ( g  .(+)  A )  =  B ) )
43rexbidv 3052 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. g  e.  X  ( g  .(+)  x )  =  y  <->  E. g  e.  X  ( g  .(+)  A )  =  B ) )
5 oveq1 6657 . . . . . 6  |-  ( g  =  h  ->  (
g  .(+)  A )  =  ( h  .(+)  A ) )
65eqeq1d 2624 . . . . 5  |-  ( g  =  h  ->  (
( g  .(+)  A )  =  B  <->  ( h  .(+) 
A )  =  B ) )
76cbvrexv 3172 . . . 4  |-  ( E. g  e.  X  ( g  .(+)  A )  =  B  <->  E. h  e.  X  ( h  .(+)  A )  =  B )
84, 7syl6bb 276 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. g  e.  X  ( g  .(+)  x )  =  y  <->  E. h  e.  X  ( h  .(+) 
A )  =  B ) )
9 gaorb.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
10 vex 3203 . . . . . . 7  |-  x  e. 
_V
11 vex 3203 . . . . . . 7  |-  y  e. 
_V
1210, 11prss 4351 . . . . . 6  |-  ( ( x  e.  Y  /\  y  e.  Y )  <->  { x ,  y } 
C_  Y )
1312anbi1i 731 . . . . 5  |-  ( ( ( x  e.  Y  /\  y  e.  Y
)  /\  E. g  e.  X  ( g  .(+)  x )  =  y )  <->  ( { x ,  y }  C_  Y  /\  E. g  e.  X  ( g  .(+)  x )  =  y ) )
1413opabbii 4717 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  Y  /\  y  e.  Y
)  /\  E. g  e.  X  ( g  .(+)  x )  =  y ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  Y  /\  E. g  e.  X  ( g  .(+)  x )  =  y ) }
159, 14eqtr4i 2647 . . 3  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  Y  /\  y  e.  Y )  /\  E. g  e.  X  ( g  .(+)  x )  =  y ) }
168, 15brab2a 5194 . 2  |-  ( A  .~  B  <->  ( ( A  e.  Y  /\  B  e.  Y )  /\  E. h  e.  X  ( h  .(+)  A )  =  B ) )
17 df-3an 1039 . 2  |-  ( ( A  e.  Y  /\  B  e.  Y  /\  E. h  e.  X  ( h  .(+)  A )  =  B )  <->  ( ( A  e.  Y  /\  B  e.  Y )  /\  E. h  e.  X  ( h  .(+)  A )  =  B ) )
1816, 17bitr4i 267 1  |-  ( A  .~  B  <->  ( A  e.  Y  /\  B  e.  Y  /\  E. h  e.  X  ( h  .(+) 
A )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {cpr 4179   class class class wbr 4653   {copab 4712  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  gaorber  17741  orbsta  17746  sylow2alem1  18032  sylow2alem2  18033  sylow3lem3  18044
  Copyright terms: Public domain W3C validator