| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylow2alem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for sylow2a 18034. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| sylow2a.x |
|
| sylow2a.m |
|
| sylow2a.p |
|
| sylow2a.f |
|
| sylow2a.y |
|
| sylow2a.z |
|
| sylow2a.r |
|
| Ref | Expression |
|---|---|
| sylow2alem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . 6
| |
| 2 | simpr 477 |
. . . . . 6
| |
| 3 | elecg 7785 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylancr 695 |
. . . . 5
|
| 5 | sylow2a.r |
. . . . . . . 8
| |
| 6 | 5 | gaorb 17740 |
. . . . . . 7
|
| 7 | 6 | simp3bi 1078 |
. . . . . 6
|
| 8 | oveq2 6658 |
. . . . . . . . . . . . . 14
| |
| 9 | id 22 |
. . . . . . . . . . . . . 14
| |
| 10 | 8, 9 | eqeq12d 2637 |
. . . . . . . . . . . . 13
|
| 11 | 10 | ralbidv 2986 |
. . . . . . . . . . . 12
|
| 12 | sylow2a.z |
. . . . . . . . . . . 12
| |
| 13 | 11, 12 | elrab2 3366 |
. . . . . . . . . . 11
|
| 14 | 2, 13 | sylib 208 |
. . . . . . . . . 10
|
| 15 | 14 | simprd 479 |
. . . . . . . . 9
|
| 16 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 17 | 16 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 18 | 17 | rspccva 3308 |
. . . . . . . . 9
|
| 19 | 15, 18 | sylan 488 |
. . . . . . . 8
|
| 20 | eqeq1 2626 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl5ibcom 235 |
. . . . . . 7
|
| 22 | 21 | rexlimdva 3031 |
. . . . . 6
|
| 23 | 7, 22 | syl5 34 |
. . . . 5
|
| 24 | 4, 23 | sylbid 230 |
. . . 4
|
| 25 | velsn 4193 |
. . . 4
| |
| 26 | 24, 25 | syl6ibr 242 |
. . 3
|
| 27 | 26 | ssrdv 3609 |
. 2
|
| 28 | sylow2a.m |
. . . . . . 7
| |
| 29 | sylow2a.x |
. . . . . . . 8
| |
| 30 | 5, 29 | gaorber 17741 |
. . . . . . 7
|
| 31 | 28, 30 | syl 17 |
. . . . . 6
|
| 32 | 31 | adantr 481 |
. . . . 5
|
| 33 | 14 | simpld 475 |
. . . . 5
|
| 34 | 32, 33 | erref 7762 |
. . . 4
|
| 35 | elecg 7785 |
. . . . 5
| |
| 36 | 2, 35 | sylancom 701 |
. . . 4
|
| 37 | 34, 36 | mpbird 247 |
. . 3
|
| 38 | 37 | snssd 4340 |
. 2
|
| 39 | 27, 38 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-ec 7744 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-ga 17723 |
| This theorem is referenced by: sylow2alem2 18033 sylow2a 18034 |
| Copyright terms: Public domain | W3C validator |