MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem1 Structured version   Visualization version   Unicode version

Theorem sylow2alem1 18032
Description: Lemma for sylow2a 18034. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x  |-  X  =  ( Base `  G
)
sylow2a.m  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
sylow2a.p  |-  ( ph  ->  P pGrp  G )
sylow2a.f  |-  ( ph  ->  X  e.  Fin )
sylow2a.y  |-  ( ph  ->  Y  e.  Fin )
sylow2a.z  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
sylow2a.r  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
sylow2alem1  |-  ( (
ph  /\  A  e.  Z )  ->  [ A ]  .~  =  { A } )
Distinct variable groups:    .~ , h    g, h, u, x, y, A   
g, G, x, y    .(+) , g, h, u, x, y    g, X, h, u, x, y    ph, h    g, Y, h, u, x, y
Allowed substitution hints:    ph( x, y, u, g)    P( x, y, u, g, h)    .~ ( x, y, u, g)    G( u, h)    Z( x, y, u, g, h)

Proof of Theorem sylow2alem1
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6  |-  w  e. 
_V
2 simpr 477 . . . . . 6  |-  ( (
ph  /\  A  e.  Z )  ->  A  e.  Z )
3 elecg 7785 . . . . . 6  |-  ( ( w  e.  _V  /\  A  e.  Z )  ->  ( w  e.  [ A ]  .~  <->  A  .~  w ) )
41, 2, 3sylancr 695 . . . . 5  |-  ( (
ph  /\  A  e.  Z )  ->  (
w  e.  [ A ]  .~  <->  A  .~  w
) )
5 sylow2a.r . . . . . . . 8  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
65gaorb 17740 . . . . . . 7  |-  ( A  .~  w  <->  ( A  e.  Y  /\  w  e.  Y  /\  E. k  e.  X  ( k  .(+)  A )  =  w ) )
76simp3bi 1078 . . . . . 6  |-  ( A  .~  w  ->  E. k  e.  X  ( k  .(+)  A )  =  w )
8 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( u  =  A  ->  (
h  .(+)  u )  =  ( h  .(+)  A ) )
9 id 22 . . . . . . . . . . . . . 14  |-  ( u  =  A  ->  u  =  A )
108, 9eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( u  =  A  ->  (
( h  .(+)  u )  =  u  <->  ( h  .(+) 
A )  =  A ) )
1110ralbidv 2986 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( A. h  e.  X  ( h  .(+)  u )  =  u  <->  A. h  e.  X  ( h  .(+) 
A )  =  A ) )
12 sylow2a.z . . . . . . . . . . . 12  |-  Z  =  { u  e.  Y  |  A. h  e.  X  ( h  .(+)  u )  =  u }
1311, 12elrab2 3366 . . . . . . . . . . 11  |-  ( A  e.  Z  <->  ( A  e.  Y  /\  A. h  e.  X  ( h  .(+) 
A )  =  A ) )
142, 13sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  Z )  ->  ( A  e.  Y  /\  A. h  e.  X  ( h  .(+)  A )  =  A ) )
1514simprd 479 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  Z )  ->  A. h  e.  X  ( h  .(+) 
A )  =  A )
16 oveq1 6657 . . . . . . . . . . 11  |-  ( h  =  k  ->  (
h  .(+)  A )  =  ( k  .(+)  A ) )
1716eqeq1d 2624 . . . . . . . . . 10  |-  ( h  =  k  ->  (
( h  .(+)  A )  =  A  <->  ( k  .(+)  A )  =  A ) )
1817rspccva 3308 . . . . . . . . 9  |-  ( ( A. h  e.  X  ( h  .(+)  A )  =  A  /\  k  e.  X )  ->  (
k  .(+)  A )  =  A )
1915, 18sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  Z )  /\  k  e.  X )  ->  (
k  .(+)  A )  =  A )
20 eqeq1 2626 . . . . . . . 8  |-  ( ( k  .(+)  A )  =  w  ->  ( ( k  .(+)  A )  =  A  <->  w  =  A
) )
2119, 20syl5ibcom 235 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  Z )  /\  k  e.  X )  ->  (
( k  .(+)  A )  =  w  ->  w  =  A ) )
2221rexlimdva 3031 . . . . . 6  |-  ( (
ph  /\  A  e.  Z )  ->  ( E. k  e.  X  ( k  .(+)  A )  =  w  ->  w  =  A ) )
237, 22syl5 34 . . . . 5  |-  ( (
ph  /\  A  e.  Z )  ->  ( A  .~  w  ->  w  =  A ) )
244, 23sylbid 230 . . . 4  |-  ( (
ph  /\  A  e.  Z )  ->  (
w  e.  [ A ]  .~  ->  w  =  A ) )
25 velsn 4193 . . . 4  |-  ( w  e.  { A }  <->  w  =  A )
2624, 25syl6ibr 242 . . 3  |-  ( (
ph  /\  A  e.  Z )  ->  (
w  e.  [ A ]  .~  ->  w  e.  { A } ) )
2726ssrdv 3609 . 2  |-  ( (
ph  /\  A  e.  Z )  ->  [ A ]  .~  C_  { A } )
28 sylow2a.m . . . . . . 7  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  Y ) )
29 sylow2a.x . . . . . . . 8  |-  X  =  ( Base `  G
)
305, 29gaorber 17741 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
3128, 30syl 17 . . . . . 6  |-  ( ph  ->  .~  Er  Y )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  A  e.  Z )  ->  .~  Er  Y )
3314simpld 475 . . . . 5  |-  ( (
ph  /\  A  e.  Z )  ->  A  e.  Y )
3432, 33erref 7762 . . . 4  |-  ( (
ph  /\  A  e.  Z )  ->  A  .~  A )
35 elecg 7785 . . . . 5  |-  ( ( A  e.  Z  /\  A  e.  Z )  ->  ( A  e.  [ A ]  .~  <->  A  .~  A ) )
362, 35sylancom 701 . . . 4  |-  ( (
ph  /\  A  e.  Z )  ->  ( A  e.  [ A ]  .~  <->  A  .~  A ) )
3734, 36mpbird 247 . . 3  |-  ( (
ph  /\  A  e.  Z )  ->  A  e.  [ A ]  .~  )
3837snssd 4340 . 2  |-  ( (
ph  /\  A  e.  Z )  ->  { A }  C_  [ A ]  .~  )
3927, 38eqssd 3620 1  |-  ( (
ph  /\  A  e.  Z )  ->  [ A ]  .~  =  { A } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650    Er wer 7739   [cec 7740   Fincfn 7955   Basecbs 15857    GrpAct cga 17722   pGrp cpgp 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-ec 7744  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ga 17723
This theorem is referenced by:  sylow2alem2  18033  sylow2a  18034
  Copyright terms: Public domain W3C validator