MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorber Structured version   Visualization version   Unicode version

Theorem gaorber 17741
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaorb.1  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
gaorber.2  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gaorber  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
Distinct variable groups:    x, g,
y,  .(+)    g, X, x, y   
x, Y, y
Allowed substitution hints:    .~ ( x, y, g)    G( x, y, g)    Y( g)

Proof of Theorem gaorber
Dummy variables  h  f  k  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaorb.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
21relopabi 5245 . . 3  |-  Rel  .~
32a1i 11 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Rel  .~  )
4 simpr 477 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  u  .~  v )
51gaorb 17740 . . . . 5  |-  ( u  .~  v  <->  ( u  e.  Y  /\  v  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  v ) )
64, 5sylib 208 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  (
u  e.  Y  /\  v  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  v ) )
76simp2d 1074 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  v  e.  Y )
86simp1d 1073 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  u  e.  Y )
96simp3d 1075 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  E. h  e.  X  ( h  .(+) 
u )  =  v )
10 simpll 790 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  -> 
.(+)  e.  ( G  GrpAct  Y ) )
11 simpr 477 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  h  e.  X )
128adantr 481 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  u  e.  Y )
137adantr 481 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  v  e.  Y )
14 gaorber.2 . . . . . . . 8  |-  X  =  ( Base `  G
)
15 eqid 2622 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
1614, 15gacan 17738 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
h  e.  X  /\  u  e.  Y  /\  v  e.  Y )
)  ->  ( (
h  .(+)  u )  =  v  <->  ( ( ( invg `  G
) `  h )  .(+)  v )  =  u ) )
1710, 11, 12, 13, 16syl13anc 1328 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( h  .(+)  u )  =  v  <->  ( (
( invg `  G ) `  h
)  .(+)  v )  =  u ) )
18 gagrp 17725 . . . . . . . . 9  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
1918adantr 481 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  G  e.  Grp )
2014, 15grpinvcl 17467 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  h  e.  X )  ->  ( ( invg `  G ) `  h
)  e.  X )
2119, 20sylan 488 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( invg `  G ) `  h
)  e.  X )
22 oveq1 6657 . . . . . . . . . 10  |-  ( k  =  ( ( invg `  G ) `
 h )  -> 
( k  .(+)  v )  =  ( ( ( invg `  G
) `  h )  .(+)  v ) )
2322eqeq1d 2624 . . . . . . . . 9  |-  ( k  =  ( ( invg `  G ) `
 h )  -> 
( ( k  .(+)  v )  =  u  <->  ( (
( invg `  G ) `  h
)  .(+)  v )  =  u ) )
2423rspcev 3309 . . . . . . . 8  |-  ( ( ( ( invg `  G ) `  h
)  e.  X  /\  ( ( ( invg `  G ) `
 h )  .(+)  v )  =  u )  ->  E. k  e.  X  ( k  .(+)  v )  =  u )
2524ex 450 . . . . . . 7  |-  ( ( ( invg `  G ) `  h
)  e.  X  -> 
( ( ( ( invg `  G
) `  h )  .(+)  v )  =  u  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2621, 25syl 17 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( ( ( invg `  G
) `  h )  .(+)  v )  =  u  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2717, 26sylbid 230 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  /\  h  e.  X )  ->  ( ( h  .(+)  u )  =  v  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
2827rexlimdva 3031 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  ( E. h  e.  X  ( h  .(+)  u )  =  v  ->  E. k  e.  X  ( k  .(+)  v )  =  u ) )
299, 28mpd 15 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  E. k  e.  X  ( k  .(+)  v )  =  u )
301gaorb 17740 . . 3  |-  ( v  .~  u  <->  ( v  e.  Y  /\  u  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  u ) )
317, 8, 29, 30syl3anbrc 1246 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  .~  v )  ->  v  .~  u )
328adantrr 753 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  u  e.  Y
)
33 simprr 796 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  v  .~  w
)
341gaorb 17740 . . . . 5  |-  ( v  .~  w  <->  ( v  e.  Y  /\  w  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
3533, 34sylib 208 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( v  e.  Y  /\  w  e.  Y  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
3635simp2d 1074 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  w  e.  Y
)
379adantrr 753 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. h  e.  X  ( h  .(+)  u )  =  v )
3835simp3d 1075 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. k  e.  X  ( k  .(+)  v )  =  w )
39 reeanv 3107 . . . . 5  |-  ( E. h  e.  X  E. k  e.  X  (
( h  .(+)  u )  =  v  /\  (
k  .(+)  v )  =  w )  <->  ( E. h  e.  X  (
h  .(+)  u )  =  v  /\  E. k  e.  X  ( k  .(+)  v )  =  w ) )
4018ad2antrr 762 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  G  e.  Grp )
41 simprlr 803 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  k  e.  X
)
42 simprll 802 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  h  e.  X
)
43 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
4414, 43grpcl 17430 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  k  e.  X  /\  h  e.  X )  ->  ( k ( +g  `  G ) h )  e.  X )
4540, 41, 42, 44syl3anc 1326 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k ( +g  `  G ) h )  e.  X
)
46 simpll 790 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  .(+)  e.  ( G 
GrpAct  Y ) )
4732adantr 481 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  u  e.  Y
)
4814, 43gaass 17730 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
k  e.  X  /\  h  e.  X  /\  u  e.  Y )
)  ->  ( (
k ( +g  `  G
) h )  .(+)  u )  =  ( k 
.(+)  ( h  .(+)  u ) ) )
4946, 41, 42, 47, 48syl13anc 1328 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( ( k ( +g  `  G
) h )  .(+)  u )  =  ( k 
.(+)  ( h  .(+)  u ) ) )
50 simprrl 804 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( h  .(+)  u )  =  v )
5150oveq2d 6666 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k  .(+)  ( h  .(+)  u )
)  =  ( k 
.(+)  v ) )
52 simprrr 805 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( k  .(+)  v )  =  w )
5349, 51, 523eqtrd 2660 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  ( ( k ( +g  `  G
) h )  .(+)  u )  =  w )
54 oveq1 6657 . . . . . . . . . 10  |-  ( f  =  ( k ( +g  `  G ) h )  ->  (
f  .(+)  u )  =  ( ( k ( +g  `  G ) h )  .(+)  u ) )
5554eqeq1d 2624 . . . . . . . . 9  |-  ( f  =  ( k ( +g  `  G ) h )  ->  (
( f  .(+)  u )  =  w  <->  ( (
k ( +g  `  G
) h )  .(+)  u )  =  w ) )
5655rspcev 3309 . . . . . . . 8  |-  ( ( ( k ( +g  `  G ) h )  e.  X  /\  (
( k ( +g  `  G ) h ) 
.(+)  u )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
5745, 53, 56syl2anc 693 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
( h  e.  X  /\  k  e.  X
)  /\  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w ) ) )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
5857expr 643 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( u  .~  v  /\  v  .~  w
) )  /\  (
h  e.  X  /\  k  e.  X )
)  ->  ( (
( h  .(+)  u )  =  v  /\  (
k  .(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
5958rexlimdvva 3038 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( E. h  e.  X  E. k  e.  X  ( (
h  .(+)  u )  =  v  /\  ( k 
.(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6039, 59syl5bir 233 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  ( ( E. h  e.  X  ( h  .(+)  u )  =  v  /\  E. k  e.  X  ( k  .(+)  v )  =  w )  ->  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6137, 38, 60mp2and 715 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  E. f  e.  X  ( f  .(+)  u )  =  w )
621gaorb 17740 . . 3  |-  ( u  .~  w  <->  ( u  e.  Y  /\  w  e.  Y  /\  E. f  e.  X  ( f  .(+)  u )  =  w ) )
6332, 36, 61, 62syl3anbrc 1246 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  .~  v  /\  v  .~  w ) )  ->  u  .~  w
)
6418adantr 481 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  G  e.  Grp )
65 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
6614, 65grpidcl 17450 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
6764, 66syl 17 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  ( 0g `  G )  e.  X )
6865gagrpid 17727 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  (
( 0g `  G
)  .(+)  u )  =  u )
69 oveq1 6657 . . . . . . . . 9  |-  ( h  =  ( 0g `  G )  ->  (
h  .(+)  u )  =  ( ( 0g `  G )  .(+)  u ) )
7069eqeq1d 2624 . . . . . . . 8  |-  ( h  =  ( 0g `  G )  ->  (
( h  .(+)  u )  =  u  <->  ( ( 0g `  G )  .(+)  u )  =  u ) )
7170rspcev 3309 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  ( ( 0g `  G )  .(+)  u )  =  u )  ->  E. h  e.  X  ( h  .(+)  u )  =  u )
7267, 68, 71syl2anc 693 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  u  e.  Y )  ->  E. h  e.  X  ( h  .(+) 
u )  =  u )
7372ex 450 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  ->  E. h  e.  X  ( h  .(+) 
u )  =  u ) )
7473pm4.71rd 667 . . . 4  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  ( E. h  e.  X  ( h  .(+) 
u )  =  u  /\  u  e.  Y
) ) )
75 df-3an 1039 . . . . 5  |-  ( ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  u )  <->  ( (
u  e.  Y  /\  u  e.  Y )  /\  E. h  e.  X  ( h  .(+)  u )  =  u ) )
76 anidm 676 . . . . . 6  |-  ( ( u  e.  Y  /\  u  e.  Y )  <->  u  e.  Y )
7776anbi2ci 732 . . . . 5  |-  ( ( ( u  e.  Y  /\  u  e.  Y
)  /\  E. h  e.  X  ( h  .(+) 
u )  =  u )  <->  ( E. h  e.  X  ( h  .(+) 
u )  =  u  /\  u  e.  Y
) )
7875, 77bitri 264 . . . 4  |-  ( ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+)  u )  =  u )  <->  ( E. h  e.  X  (
h  .(+)  u )  =  u  /\  u  e.  Y ) )
7974, 78syl6bbr 278 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  u ) ) )
801gaorb 17740 . . 3  |-  ( u  .~  u  <->  ( u  e.  Y  /\  u  e.  Y  /\  E. h  e.  X  ( h  .(+) 
u )  =  u ) )
8179, 80syl6bbr 278 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( u  e.  Y  <->  u  .~  u
) )
823, 31, 63, 81iserd 7768 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .~  Er  Y
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   {cpr 4179   class class class wbr 4653   {copab 4712   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    Er wer 7739   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ga 17723
This theorem is referenced by:  sylow1lem3  18015  sylow1lem5  18017  sylow2alem1  18032  sylow2alem2  18033  sylow2a  18034  sylow3lem3  18044
  Copyright terms: Public domain W3C validator