MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gropeld Structured version   Visualization version   Unicode version

Theorem gropeld 25925
Description: If any representation of a graph with vertices  V and edges  E is an element of an arbitrary class  C, then the ordered pair  <. V ,  E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices  V and edges  E) is an element of this class 
C. (Contributed by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
gropeld.g  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  g  e.  C ) )
gropeld.v  |-  ( ph  ->  V  e.  U )
gropeld.e  |-  ( ph  ->  E  e.  W )
Assertion
Ref Expression
gropeld  |-  ( ph  -> 
<. V ,  E >.  e.  C )
Distinct variable groups:    C, g    g, E    g, V    ph, g
Allowed substitution hints:    U( g)    W( g)

Proof of Theorem gropeld
StepHypRef Expression
1 gropeld.g . . 3  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  g  e.  C ) )
2 gropeld.v . . 3  |-  ( ph  ->  V  e.  U )
3 gropeld.e . . 3  |-  ( ph  ->  E  e.  W )
41, 2, 3gropd 25923 . 2  |-  ( ph  ->  [. <. V ,  E >.  /  g ]. g  e.  C )
5 sbcel1v 3495 . 2  |-  ( [. <. V ,  E >.  /  g ]. g  e.  C  <->  <. V ,  E >.  e.  C )
64, 5sylib 208 1  |-  ( ph  -> 
<. V ,  E >.  e.  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   <.cop 4183   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877
This theorem is referenced by:  upgr0eopALT  26011  upgr1eopALT  26012  upgrspanop  26189  umgrspanop  26190  usgrspanop  26191  cplgrop  26333
  Copyright terms: Public domain W3C validator