MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgrop Structured version   Visualization version   Unicode version

Theorem cplgrop 26333
Description: A complete graph represented by an ordered pair. (Contributed by AV, 10-Nov-2020.)
Assertion
Ref Expression
cplgrop  |-  ( G  e. ComplGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. ComplGraph )

Proof of Theorem cplgrop
Dummy variables  e 
g  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . . . . 6  |-  (Edg `  G )  =  (Edg
`  G )
31, 2iscplgredg 26313 . . . . 5  |-  ( G  e. ComplGraph  ->  ( G  e. ComplGraph  <->  A. v  e.  (Vtx `  G
) A. n  e.  ( (Vtx `  G
)  \  { v } ) E. e  e.  (Edg `  G ) { v ,  n }  C_  e ) )
4 edgval 25941 . . . . . . 7  |-  (Edg `  G )  =  ran  (iEdg `  G )
54a1i 11 . . . . . 6  |-  ( G  e. ComplGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
6 simpl 473 . . . . . . . . . . . 12  |-  ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  (Vtx `  g
)  =  (Vtx `  G ) )
76adantl 482 . . . . . . . . . . 11  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  (Vtx `  g )  =  (Vtx
`  G ) )
86difeq1d 3727 . . . . . . . . . . . . 13  |-  ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  ( (Vtx `  g )  \  {
v } )  =  ( (Vtx `  G
)  \  { v } ) )
98adantl 482 . . . . . . . . . . . 12  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  (
(Vtx `  g )  \  { v } )  =  ( (Vtx `  G )  \  {
v } ) )
10 edgval 25941 . . . . . . . . . . . . . . . 16  |-  (Edg `  g )  =  ran  (iEdg `  g )
11 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  (iEdg `  g
)  =  (iEdg `  G ) )
1211rneqd 5353 . . . . . . . . . . . . . . . 16  |-  ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  ran  (iEdg `  g )  =  ran  (iEdg `  G ) )
1310, 12syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  (Edg `  g
)  =  ran  (iEdg `  G ) )
1413adantl 482 . . . . . . . . . . . . . 14  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  (Edg `  g )  =  ran  (iEdg `  G ) )
15 simpl 473 . . . . . . . . . . . . . 14  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  (Edg `  G )  =  ran  (iEdg `  G ) )
1614, 15eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  (Edg `  g )  =  (Edg
`  G ) )
1716rexeqdv 3145 . . . . . . . . . . . 12  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  ( E. e  e.  (Edg `  g ) { v ,  n }  C_  e 
<->  E. e  e.  (Edg
`  G ) { v ,  n }  C_  e ) )
189, 17raleqbidv 3152 . . . . . . . . . . 11  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  ( A. n  e.  (
(Vtx `  g )  \  { v } ) E. e  e.  (Edg
`  g ) { v ,  n }  C_  e  <->  A. n  e.  ( (Vtx `  G )  \  { v } ) E. e  e.  (Edg
`  G ) { v ,  n }  C_  e ) )
197, 18raleqbidv 3152 . . . . . . . . . 10  |-  ( ( (Edg `  G )  =  ran  (iEdg `  G
)  /\  ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  ( A. v  e.  (Vtx `  g ) A. n  e.  ( (Vtx `  g
)  \  { v } ) E. e  e.  (Edg `  g ) { v ,  n }  C_  e  <->  A. v  e.  (Vtx `  G ) A. n  e.  (
(Vtx `  G )  \  { v } ) E. e  e.  (Edg
`  G ) { v ,  n }  C_  e ) )
2019biimpar 502 . . . . . . . . 9  |-  ( ( ( (Edg `  G
)  =  ran  (iEdg `  G )  /\  (
(Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  /\  A. v  e.  (Vtx `  G
) A. n  e.  ( (Vtx `  G
)  \  { v } ) E. e  e.  (Edg `  G ) { v ,  n }  C_  e )  ->  A. v  e.  (Vtx `  g ) A. n  e.  ( (Vtx `  g
)  \  { v } ) E. e  e.  (Edg `  g ) { v ,  n }  C_  e )
21 vex 3203 . . . . . . . . . 10  |-  g  e. 
_V
22 eqid 2622 . . . . . . . . . . 11  |-  (Vtx `  g )  =  (Vtx
`  g )
23 eqid 2622 . . . . . . . . . . 11  |-  (Edg `  g )  =  (Edg
`  g )
2422, 23iscplgredg 26313 . . . . . . . . . 10  |-  ( g  e.  _V  ->  (
g  e. ComplGraph  <->  A. v  e.  (Vtx
`  g ) A. n  e.  ( (Vtx `  g )  \  {
v } ) E. e  e.  (Edg `  g ) { v ,  n }  C_  e ) )
2521, 24ax-mp 5 . . . . . . . . 9  |-  ( g  e. ComplGraph 
<-> 
A. v  e.  (Vtx
`  g ) A. n  e.  ( (Vtx `  g )  \  {
v } ) E. e  e.  (Edg `  g ) { v ,  n }  C_  e )
2620, 25sylibr 224 . . . . . . . 8  |-  ( ( ( (Edg `  G
)  =  ran  (iEdg `  G )  /\  (
(Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  /\  A. v  e.  (Vtx `  G
) A. n  e.  ( (Vtx `  G
)  \  { v } ) E. e  e.  (Edg `  G ) { v ,  n }  C_  e )  -> 
g  e. ComplGraph )
2726expcom 451 . . . . . . 7  |-  ( A. v  e.  (Vtx `  G
) A. n  e.  ( (Vtx `  G
)  \  { v } ) E. e  e.  (Edg `  G ) { v ,  n }  C_  e  ->  (
( (Edg `  G
)  =  ran  (iEdg `  G )  /\  (
(Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
) )  ->  g  e. ComplGraph ) )
2827expd 452 . . . . . 6  |-  ( A. v  e.  (Vtx `  G
) A. n  e.  ( (Vtx `  G
)  \  { v } ) E. e  e.  (Edg `  G ) { v ,  n }  C_  e  ->  (
(Edg `  G )  =  ran  (iEdg `  G
)  ->  ( (
(Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  g  e. ComplGraph ) ) )
295, 28syl5com 31 . . . . 5  |-  ( G  e. ComplGraph  ->  ( A. v  e.  (Vtx `  G ) A. n  e.  (
(Vtx `  G )  \  { v } ) E. e  e.  (Edg
`  G ) { v ,  n }  C_  e  ->  ( (
(Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  g  e. ComplGraph ) ) )
303, 29sylbid 230 . . . 4  |-  ( G  e. ComplGraph  ->  ( G  e. ComplGraph  ->  ( ( (Vtx `  g )  =  (Vtx
`  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  g  e. ComplGraph ) ) )
3130pm2.43i 52 . . 3  |-  ( G  e. ComplGraph  ->  ( ( (Vtx
`  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  g  e. ComplGraph ) )
3231alrimiv 1855 . 2  |-  ( G  e. ComplGraph  ->  A. g ( ( (Vtx `  g )  =  (Vtx `  G )  /\  (iEdg `  g )  =  (iEdg `  G )
)  ->  g  e. ComplGraph ) )
33 fvexd 6203 . 2  |-  ( G  e. ComplGraph  ->  (Vtx `  G
)  e.  _V )
34 fvexd 6203 . 2  |-  ( G  e. ComplGraph  ->  (iEdg `  G
)  e.  _V )
3532, 33, 34gropeld 25925 1  |-  ( G  e. ComplGraph  ->  <. (Vtx `  G
) ,  (iEdg `  G ) >.  e. ComplGraph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183   ran crn 5115   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  ComplGraphccplgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231
This theorem is referenced by:  cusgrop  26334
  Copyright terms: Public domain W3C validator