| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o6 | Structured version Visualization version Unicode version | ||
| Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.) |
| Ref | Expression |
|---|---|
| dff1o6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5895 |
. 2
| |
| 2 | dff13 6512 |
. . 3
| |
| 3 | df-fo 5894 |
. . 3
| |
| 4 | 2, 3 | anbi12i 733 |
. 2
|
| 5 | df-3an 1039 |
. . 3
| |
| 6 | eqimss 3657 |
. . . . . . 7
| |
| 7 | 6 | anim2i 593 |
. . . . . 6
|
| 8 | df-f 5892 |
. . . . . 6
| |
| 9 | 7, 8 | sylibr 224 |
. . . . 5
|
| 10 | 9 | pm4.71ri 665 |
. . . 4
|
| 11 | 10 | anbi1i 731 |
. . 3
|
| 12 | an32 839 |
. . 3
| |
| 13 | 5, 11, 12 | 3bitrri 287 |
. 2
|
| 14 | 1, 4, 13 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: soisores 6577 f1otrg 25751 f1otrge 25752 grpoinvf 27386 bra11 28967 hgt750lemb 30734 diaf11N 36338 dibf11N 36450 lcfrlem9 36839 mapd1o 36937 hdmapf1oN 37157 hgmapf1oN 37195 rmxypairf1o 37476 |
| Copyright terms: Public domain | W3C validator |