MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o6 Structured version   Visualization version   Unicode version

Theorem dff1o6 6531
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
dff1o6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff1o6
StepHypRef Expression
1 df-f1o 5895 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 dff13 6512 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
3 df-fo 5894 . . 3  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
42, 3anbi12i 733 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
5 df-3an 1039 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( ( F  Fn  A  /\  ran  F  =  B )  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6 eqimss 3657 . . . . . . 7  |-  ( ran 
F  =  B  ->  ran  F  C_  B )
76anim2i 593 . . . . . 6  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ( F  Fn  A  /\  ran  F  C_  B ) )
8 df-f 5892 . . . . . 6  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
97, 8sylibr 224 . . . . 5  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A --> B )
109pm4.71ri 665 . . . 4  |-  ( ( F  Fn  A  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
1110anbi1i 731 . . 3  |-  ( ( ( F  Fn  A  /\  ran  F  =  B )  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )  <-> 
( ( F : A
--> B  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
12 an32 839 . . 3  |-  ( ( ( F : A --> B  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
135, 11, 123bitrri 287 . 2  |-  ( ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) )  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
141, 4, 133bitri 286 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   A.wral 2912    C_ wss 3574   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  soisores  6577  f1otrg  25751  f1otrge  25752  grpoinvf  27386  bra11  28967  hgt750lemb  30734  diaf11N  36338  dibf11N  36450  lcfrlem9  36839  mapd1o  36937  hdmapf1oN  37157  hgmapf1oN  37195  rmxypairf1o  37476
  Copyright terms: Public domain W3C validator