MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Structured version   Visualization version   Unicode version

Theorem grpolcan 27384
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grpolcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 6658 . . . . . 6  |-  ( ( C G A )  =  ( C G B )  ->  (
( ( inv `  G
) `  C ) G ( C G A ) )  =  ( ( ( inv `  G ) `  C
) G ( C G B ) ) )
21adantl 482 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  ( ( ( inv `  G ) `
 C ) G ( C G B ) ) )
3 grplcan.1 . . . . . . . . . . 11  |-  X  =  ran  G
4 eqid 2622 . . . . . . . . . . 11  |-  (GId `  G )  =  (GId
`  G )
5 eqid 2622 . . . . . . . . . . 11  |-  ( inv `  G )  =  ( inv `  G )
63, 4, 5grpolinv 27380 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
76adantlr 751 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
87oveq1d 6665 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( (GId
`  G ) G A ) )
93, 5grpoinvcl 27378 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
109adantrl 752 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
11 simprr 796 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
12 simprl 794 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
1310, 11, 123jca 1242 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )
143grpoass 27357 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1513, 14syldan 487 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1615anassrs 680 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
173, 4grpolid 27370 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
1817adantr 481 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (GId `  G ) G A )  =  A )
198, 16, 183eqtr3d 2664 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G ( C G A ) )  =  A )
2019adantrl 752 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
2120adantr 481 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
226adantrl 752 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
2322oveq1d 6665 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( (GId
`  G ) G B ) )
249adantrl 752 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
25 simprr 796 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
26 simprl 794 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
2724, 25, 263jca 1242 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )
283grpoass 27357 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
2927, 28syldan 487 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
303, 4grpolid 27370 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
(GId `  G ) G B )  =  B )
3130adantrr 753 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (GId `  G ) G B )  =  B )
3223, 29, 313eqtr3d 2664 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G ( C G B ) )  =  B )
3332adantlr 751 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
3433adantr 481 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
352, 21, 343eqtr3d 2664 . . . 4  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  ->  A  =  B )
3635exp53 647 . . 3  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B )
) ) ) )
37363imp2 1282 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B ) )
38 oveq2 6658 . 2  |-  ( A  =  B  ->  ( C G A )  =  ( C G B ) )
3937, 38impbid1 215 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-grpo 27347  df-gid 27348  df-ginv 27349
This theorem is referenced by:  grpo2inv  27385  vclcan  27426  rngolcan  33717  rngolz  33721
  Copyright terms: Public domain W3C validator