Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolz Structured version   Visualization version   Unicode version

Theorem rngolz 33721
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1  |-  Z  =  (GId `  G )
ringlz.2  |-  X  =  ran  G
ringlz.3  |-  G  =  ( 1st `  R
)
ringlz.4  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
rngolz  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z H A )  =  Z )

Proof of Theorem rngolz
StepHypRef Expression
1 ringlz.3 . . . . . . 7  |-  G  =  ( 1st `  R
)
21rngogrpo 33709 . . . . . 6  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringlz.2 . . . . . . . 8  |-  X  =  ran  G
4 ringlz.1 . . . . . . . 8  |-  Z  =  (GId `  G )
53, 4grpoidcl 27368 . . . . . . 7  |-  ( G  e.  GrpOp  ->  Z  e.  X )
63, 4grpolid 27370 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  Z  e.  X )  ->  ( Z G Z )  =  Z )
75, 6mpdan 702 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
82, 7syl 17 . . . . 5  |-  ( R  e.  RingOps  ->  ( Z G Z )  =  Z )
98adantr 481 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z G Z )  =  Z )
109oveq1d 6665 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( Z G Z ) H A )  =  ( Z H A ) )
111, 3, 4rngo0cl 33718 . . . . . 6  |-  ( R  e.  RingOps  ->  Z  e.  X
)
1211adantr 481 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  Z  e.  X )
13 simpr 477 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  A  e.  X )
1412, 12, 133jca 1242 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z  e.  X  /\  Z  e.  X  /\  A  e.  X )
)
15 ringlz.4 . . . . 5  |-  H  =  ( 2nd `  R
)
161, 15, 3rngodir 33704 . . . 4  |-  ( ( R  e.  RingOps  /\  ( Z  e.  X  /\  Z  e.  X  /\  A  e.  X )
)  ->  ( ( Z G Z ) H A )  =  ( ( Z H A ) G ( Z H A ) ) )
1714, 16syldan 487 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( Z G Z ) H A )  =  ( ( Z H A ) G ( Z H A ) ) )
182adantr 481 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  G  e.  GrpOp )
19 simpl 473 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  R  e.  RingOps )
201, 15, 3rngocl 33700 . . . . 5  |-  ( ( R  e.  RingOps  /\  Z  e.  X  /\  A  e.  X )  ->  ( Z H A )  e.  X )
2119, 12, 13, 20syl3anc 1326 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z H A )  e.  X )
223, 4grporid 27371 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( Z H A )  e.  X )  ->  (
( Z H A ) G Z )  =  ( Z H A ) )
2322eqcomd 2628 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( Z H A )  e.  X )  ->  ( Z H A )  =  ( ( Z H A ) G Z ) )
2418, 21, 23syl2anc 693 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z H A )  =  ( ( Z H A ) G Z ) )
2510, 17, 243eqtr3d 2664 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( Z H A ) G ( Z H A ) )  =  ( ( Z H A ) G Z ) )
263grpolcan 27384 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( Z H A )  e.  X  /\  Z  e.  X  /\  ( Z H A )  e.  X ) )  ->  ( ( ( Z H A ) G ( Z H A ) )  =  ( ( Z H A ) G Z )  <->  ( Z H A )  =  Z ) )
2718, 21, 12, 21, 26syl13anc 1328 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( ( Z H A ) G ( Z H A ) )  =  ( ( Z H A ) G Z )  <->  ( Z H A )  =  Z ) )
2825, 27mpbid 222 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z H A )  =  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   GrpOpcgr 27343  GIdcgi 27344   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-rngo 33694
This theorem is referenced by:  rngonegmn1l  33740  isdrngo3  33758  0idl  33824  keridl  33831  prnc  33866
  Copyright terms: Public domain W3C validator