MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruf Structured version   Visualization version   Unicode version

Theorem gruf 9633
Description: A Grothendieck universe contains all functions on its elements. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
gruf  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  F  e.  U )

Proof of Theorem gruf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . 4  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  F : A --> U )
21feqmptd 6249 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
3 fvex 6201 . . . 4  |-  ( F `
 x )  e. 
_V
43fnasrn 6411 . . 3  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ran  ( x  e.  A  |->  <. x ,  ( F `  x ) >. )
52, 4syl6eq 2672 . 2  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  F  =  ran  ( x  e.  A  |->  <. x ,  ( F `  x )
>. ) )
6 simpl1 1064 . . . . 5  |-  ( ( ( U  e.  Univ  /\  A  e.  U  /\  F : A --> U )  /\  x  e.  A
)  ->  U  e.  Univ )
7 gruel 9625 . . . . . . 7  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  x  e.  A )  ->  x  e.  U )
873expa 1265 . . . . . 6  |-  ( ( ( U  e.  Univ  /\  A  e.  U )  /\  x  e.  A
)  ->  x  e.  U )
983adantl3 1219 . . . . 5  |-  ( ( ( U  e.  Univ  /\  A  e.  U  /\  F : A --> U )  /\  x  e.  A
)  ->  x  e.  U )
10 ffvelrn 6357 . . . . . 6  |-  ( ( F : A --> U  /\  x  e.  A )  ->  ( F `  x
)  e.  U )
11103ad2antl3 1225 . . . . 5  |-  ( ( ( U  e.  Univ  /\  A  e.  U  /\  F : A --> U )  /\  x  e.  A
)  ->  ( F `  x )  e.  U
)
12 gruop 9627 . . . . 5  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  ( F `  x )  e.  U )  ->  <. x ,  ( F `  x ) >.  e.  U
)
136, 9, 11, 12syl3anc 1326 . . . 4  |-  ( ( ( U  e.  Univ  /\  A  e.  U  /\  F : A --> U )  /\  x  e.  A
)  ->  <. x ,  ( F `  x
) >.  e.  U )
14 eqid 2622 . . . 4  |-  ( x  e.  A  |->  <. x ,  ( F `  x ) >. )  =  ( x  e.  A  |->  <. x ,  ( F `  x )
>. )
1513, 14fmptd 6385 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  (
x  e.  A  |->  <.
x ,  ( F `
 x ) >.
) : A --> U )
16 grurn 9623 . . 3  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  (
x  e.  A  |->  <.
x ,  ( F `
 x ) >.
) : A --> U )  ->  ran  ( x  e.  A  |->  <. x ,  ( F `  x ) >. )  e.  U )
1715, 16syld3an3 1371 . 2  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  ran  ( x  e.  A  |-> 
<. x ,  ( F `
 x ) >.
)  e.  U )
185, 17eqeltrd 2701 1  |-  ( ( U  e.  Univ  /\  A  e.  U  /\  F : A
--> U )  ->  F  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990   <.cop 4183    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-gru 9613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator