MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcval Structured version   Visualization version   Unicode version

Theorem hashbcval 15706
Description: Value of the "binomial set", the set of all  N-element subsets of  A. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
Assertion
Ref Expression
hashbcval  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Distinct variable groups:    x, C    a, b, i, x    A, a, i, x    N, a, i, x    x, V
Allowed substitution hints:    A( b)    C( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem hashbcval
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 pwexg 4850 . . . . 5  |-  ( A  e.  _V  ->  ~P A  e.  _V )
32adantr 481 . . . 4  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  ~P A  e.  _V )
4 rabexg 4812 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
53, 4syl 17 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  ->  { x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )
6 fveq2 6191 . . . . . . 7  |-  ( b  =  x  ->  ( # `
 b )  =  ( # `  x
) )
76eqeq1d 2624 . . . . . 6  |-  ( b  =  x  ->  (
( # `  b )  =  i  <->  ( # `  x
)  =  i ) )
87cbvrabv 3199 . . . . 5  |-  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P a  |  (
# `  x )  =  i }
9 simpl 473 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  a  =  A )
109pweqd 4163 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ~P a  =  ~P A )
11 simpr 477 . . . . . . 7  |-  ( ( a  =  A  /\  i  =  N )  ->  i  =  N )
1211eqeq2d 2632 . . . . . 6  |-  ( ( a  =  A  /\  i  =  N )  ->  ( ( # `  x
)  =  i  <->  ( # `  x
)  =  N ) )
1310, 12rabeqbidv 3195 . . . . 5  |-  ( ( a  =  A  /\  i  =  N )  ->  { x  e.  ~P a  |  ( # `  x
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
148, 13syl5eq 2668 . . . 4  |-  ( ( a  =  A  /\  i  =  N )  ->  { b  e.  ~P a  |  ( # `  b
)  =  i }  =  { x  e. 
~P A  |  (
# `  x )  =  N } )
15 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
1614, 15ovmpt2ga 6790 . . 3  |-  ( ( A  e.  _V  /\  N  e.  NN0  /\  {
x  e.  ~P A  |  ( # `  x
)  =  N }  e.  _V )  ->  ( A C N )  =  { x  e.  ~P A  |  ( # `  x
)  =  N }
)
175, 16mpd3an3 1425 . 2  |-  ( ( A  e.  _V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
181, 17sylan 488 1  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( A C N )  =  { x  e.  ~P A  |  (
# `  x )  =  N } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   NN0cn0 11292   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  hashbccl  15707  hashbcss  15708  hashbc0  15709  hashbc2  15710  ramval  15712  ram0  15726  ramub1lem1  15730  ramub1lem2  15731
  Copyright terms: Public domain W3C validator