Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1valc Structured version   Visualization version   Unicode version

Theorem hdmap1valc 37093
Description: Connect the value of the preliminary map from vectors to functionals  I to the hypothesis  L used by earlier theorems. Note: the  X  e.  ( V  \  {  .0.  } ) hypothesis could be the more general  X  e.  V but the former will be easier to use. TODO: use the  I function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 37092 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1valc.h  |-  H  =  ( LHyp `  K
)
hdmap1valc.u  |-  U  =  ( ( DVecH `  K
) `  W )
hdmap1valc.v  |-  V  =  ( Base `  U
)
hdmap1valc.s  |-  .-  =  ( -g `  U )
hdmap1valc.o  |-  .0.  =  ( 0g `  U )
hdmap1valc.n  |-  N  =  ( LSpan `  U )
hdmap1valc.c  |-  C  =  ( (LCDual `  K
) `  W )
hdmap1valc.d  |-  D  =  ( Base `  C
)
hdmap1valc.r  |-  R  =  ( -g `  C
)
hdmap1valc.q  |-  Q  =  ( 0g `  C
)
hdmap1valc.j  |-  J  =  ( LSpan `  C )
hdmap1valc.m  |-  M  =  ( (mapd `  K
) `  W )
hdmap1valc.i  |-  I  =  ( (HDMap1 `  K
) `  W )
hdmap1valc.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
hdmap1valc.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
hdmap1valc.f  |-  ( ph  ->  F  e.  D )
hdmap1valc.y  |-  ( ph  ->  Y  e.  V )
hdmap1valc.l  |-  L  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
Assertion
Ref Expression
hdmap1valc  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( L `
 <. X ,  F ,  Y >. ) )
Distinct variable groups:    x,  .0.    x, h, D    h, J, x    h, M, x    .- , h, x    h, N, x    R, h, x    x, Q
Allowed substitution hints:    ph( x, h)    C( x, h)    Q( h)    U( x, h)    F( x, h)    H( x, h)    I( x, h)    K( x, h)    L( x, h)    V( x, h)    W( x, h)    X( x, h)    Y( x, h)    .0. ( h)

Proof of Theorem hdmap1valc
Dummy variables  w  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1valc.h . . 3  |-  H  =  ( LHyp `  K
)
2 hdmap1valc.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 hdmap1valc.v . . 3  |-  V  =  ( Base `  U
)
4 hdmap1valc.s . . 3  |-  .-  =  ( -g `  U )
5 hdmap1valc.o . . 3  |-  .0.  =  ( 0g `  U )
6 hdmap1valc.n . . 3  |-  N  =  ( LSpan `  U )
7 hdmap1valc.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
8 hdmap1valc.d . . 3  |-  D  =  ( Base `  C
)
9 hdmap1valc.r . . 3  |-  R  =  ( -g `  C
)
10 hdmap1valc.q . . 3  |-  Q  =  ( 0g `  C
)
11 hdmap1valc.j . . 3  |-  J  =  ( LSpan `  C )
12 hdmap1valc.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
13 hdmap1valc.i . . 3  |-  I  =  ( (HDMap1 `  K
) `  W )
14 hdmap1valc.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 hdmap1valc.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
1615eldifad 3586 . . 3  |-  ( ph  ->  X  e.  V )
17 hdmap1valc.f . . 3  |-  ( ph  ->  F  e.  D )
18 hdmap1valc.y . . 3  |-  ( ph  ->  Y  e.  V )
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18hdmap1val 37088 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  if ( Y  =  .0.  ,  Q ,  ( iota_ g  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( J `  { g } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R g ) } ) ) ) ) )
20 hdmap1valc.l . . . 4  |-  L  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
2120hdmap1cbv 37092 . . 3  |-  L  =  ( w  e.  _V  |->  if ( ( 2nd `  w
)  =  .0.  ,  Q ,  ( iota_ g  e.  D  ( ( M `  ( N `
 { ( 2nd `  w ) } ) )  =  ( J `
 { g } )  /\  ( M `
 ( N `  { ( ( 1st `  ( 1st `  w
) )  .-  ( 2nd `  w ) ) } ) )  =  ( J `  {
( ( 2nd `  ( 1st `  w ) ) R g ) } ) ) ) ) )
2210, 21, 16, 17, 18mapdhval 37013 . 2  |-  ( ph  ->  ( L `  <. X ,  F ,  Y >. )  =  if ( Y  =  .0.  ,  Q ,  ( iota_ g  e.  D  ( ( M `  ( N `
 { Y }
) )  =  ( J `  { g } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R g ) } ) ) ) ) )
2319, 22eqtr4d 2659 1  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  ( L `
 <. X ,  F ,  Y >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   ifcif 4086   {csn 4177   <.cotp 4185    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   0gc0g 16100   -gcsg 17424   LSpanclspn 18971   HLchlt 34637   LHypclh 35270   DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-hdmap1 37083
This theorem is referenced by:  hdmap1cl  37094  hdmap1eq2  37095  hdmap1eq4N  37096  hdmap1eulem  37113  hdmap1eulemOLDN  37114
  Copyright terms: Public domain W3C validator