| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof2fval | Structured version Visualization version Unicode version | ||
| Description: The morphism part of the
Hom functor, for morphisms
|
| Ref | Expression |
|---|---|
| hofval.m |
|
| hofval.c |
|
| hof1.b |
|
| hof1.h |
|
| hof1.x |
|
| hof1.y |
|
| hof2.z |
|
| hof2.w |
|
| hof2.o |
|
| Ref | Expression |
|---|---|
| hof2fval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m |
. . . 4
| |
| 2 | hofval.c |
. . . 4
| |
| 3 | hof1.b |
. . . 4
| |
| 4 | hof1.h |
. . . 4
| |
| 5 | hof2.o |
. . . 4
| |
| 6 | 1, 2, 3, 4, 5 | hofval 16892 |
. . 3
|
| 7 | fvex 6201 |
. . . 4
| |
| 8 | fvex 6201 |
. . . . . . 7
| |
| 9 | 3, 8 | eqeltri 2697 |
. . . . . 6
|
| 10 | 9, 9 | xpex 6962 |
. . . . 5
|
| 11 | 10, 10 | mpt2ex 7247 |
. . . 4
|
| 12 | 7, 11 | op2ndd 7179 |
. . 3
|
| 13 | 6, 12 | syl 17 |
. 2
|
| 14 | simprr 796 |
. . . . . 6
| |
| 15 | 14 | fveq2d 6195 |
. . . . 5
|
| 16 | hof2.z |
. . . . . . 7
| |
| 17 | hof2.w |
. . . . . . 7
| |
| 18 | op1stg 7180 |
. . . . . . 7
| |
| 19 | 16, 17, 18 | syl2anc 693 |
. . . . . 6
|
| 20 | 19 | adantr 481 |
. . . . 5
|
| 21 | 15, 20 | eqtrd 2656 |
. . . 4
|
| 22 | simprl 794 |
. . . . . 6
| |
| 23 | 22 | fveq2d 6195 |
. . . . 5
|
| 24 | hof1.x |
. . . . . . 7
| |
| 25 | hof1.y |
. . . . . . 7
| |
| 26 | op1stg 7180 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . 6
|
| 28 | 27 | adantr 481 |
. . . . 5
|
| 29 | 23, 28 | eqtrd 2656 |
. . . 4
|
| 30 | 21, 29 | oveq12d 6668 |
. . 3
|
| 31 | 22 | fveq2d 6195 |
. . . . 5
|
| 32 | op2ndg 7181 |
. . . . . . 7
| |
| 33 | 24, 25, 32 | syl2anc 693 |
. . . . . 6
|
| 34 | 33 | adantr 481 |
. . . . 5
|
| 35 | 31, 34 | eqtrd 2656 |
. . . 4
|
| 36 | 14 | fveq2d 6195 |
. . . . 5
|
| 37 | op2ndg 7181 |
. . . . . . 7
| |
| 38 | 16, 17, 37 | syl2anc 693 |
. . . . . 6
|
| 39 | 38 | adantr 481 |
. . . . 5
|
| 40 | 36, 39 | eqtrd 2656 |
. . . 4
|
| 41 | 35, 40 | oveq12d 6668 |
. . 3
|
| 42 | 22 | fveq2d 6195 |
. . . . 5
|
| 43 | df-ov 6653 |
. . . . 5
| |
| 44 | 42, 43 | syl6eqr 2674 |
. . . 4
|
| 45 | 21, 29 | opeq12d 4410 |
. . . . . 6
|
| 46 | 45, 40 | oveq12d 6668 |
. . . . 5
|
| 47 | 22, 40 | oveq12d 6668 |
. . . . . 6
|
| 48 | 47 | oveqd 6667 |
. . . . 5
|
| 49 | eqidd 2623 |
. . . . 5
| |
| 50 | 46, 48, 49 | oveq123d 6671 |
. . . 4
|
| 51 | 44, 50 | mpteq12dv 4733 |
. . 3
|
| 52 | 30, 41, 51 | mpt2eq123dv 6717 |
. 2
|
| 53 | opelxpi 5148 |
. . 3
| |
| 54 | 24, 25, 53 | syl2anc 693 |
. 2
|
| 55 | opelxpi 5148 |
. . 3
| |
| 56 | 16, 17, 55 | syl2anc 693 |
. 2
|
| 57 | ovex 6678 |
. . . 4
| |
| 58 | ovex 6678 |
. . . 4
| |
| 59 | 57, 58 | mpt2ex 7247 |
. . 3
|
| 60 | 59 | a1i 11 |
. 2
|
| 61 | 13, 52, 54, 56, 60 | ovmpt2d 6788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-hof 16890 |
| This theorem is referenced by: hof2val 16896 |
| Copyright terms: Public domain | W3C validator |