MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homffval Structured version   Visualization version   Unicode version

Theorem homffval 16350
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homffval.f  |-  F  =  ( Hom f  `  C )
homffval.b  |-  B  =  ( Base `  C
)
homffval.h  |-  H  =  ( Hom  `  C
)
Assertion
Ref Expression
homffval  |-  F  =  ( x  e.  B ,  y  e.  B  |->  ( x H y ) )
Distinct variable groups:    x, y, B    x, C, y    x, H, y
Allowed substitution hints:    F( x, y)

Proof of Theorem homffval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 homffval.f . 2  |-  F  =  ( Hom f  `  C )
2 fveq2 6191 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
3 homffval.b . . . . . 6  |-  B  =  ( Base `  C
)
42, 3syl6eqr 2674 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
5 fveq2 6191 . . . . . . 7  |-  ( c  =  C  ->  ( Hom  `  c )  =  ( Hom  `  C
) )
6 homffval.h . . . . . . 7  |-  H  =  ( Hom  `  C
)
75, 6syl6eqr 2674 . . . . . 6  |-  ( c  =  C  ->  ( Hom  `  c )  =  H )
87oveqd 6667 . . . . 5  |-  ( c  =  C  ->  (
x ( Hom  `  c
) y )  =  ( x H y ) )
94, 4, 8mpt2eq123dv 6717 . . . 4  |-  ( c  =  C  ->  (
x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( x ( Hom  `  c )
y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x H y ) ) )
10 df-homf 16331 . . . 4  |-  Hom f  =  (
c  e.  _V  |->  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( x ( Hom  `  c )
y ) ) )
11 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
123, 11eqeltri 2697 . . . . 5  |-  B  e. 
_V
1312, 12mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x H y ) )  e.  _V
149, 10, 13fvmpt 6282 . . 3  |-  ( C  e.  _V  ->  ( Hom f  `  C )  =  ( x  e.  B , 
y  e.  B  |->  ( x H y ) ) )
15 mpt20 6725 . . . . 5  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( x H y ) )  =  (/)
1615eqcomi 2631 . . . 4  |-  (/)  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x H y ) )
17 fvprc 6185 . . . 4  |-  ( -.  C  e.  _V  ->  ( Hom f  `  C )  =  (/) )
18 fvprc 6185 . . . . . 6  |-  ( -.  C  e.  _V  ->  (
Base `  C )  =  (/) )
193, 18syl5eq 2668 . . . . 5  |-  ( -.  C  e.  _V  ->  B  =  (/) )
20 mpt2eq12 6715 . . . . 5  |-  ( ( B  =  (/)  /\  B  =  (/) )  ->  (
x  e.  B , 
y  e.  B  |->  ( x H y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x H y ) ) )
2119, 19, 20syl2anc 693 . . . 4  |-  ( -.  C  e.  _V  ->  ( x  e.  B , 
y  e.  B  |->  ( x H y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x H y ) ) )
2216, 17, 213eqtr4a 2682 . . 3  |-  ( -.  C  e.  _V  ->  ( Hom f  `  C )  =  ( x  e.  B , 
y  e.  B  |->  ( x H y ) ) )
2314, 22pm2.61i 176 . 2  |-  ( Hom f  `  C )  =  ( x  e.  B , 
y  e.  B  |->  ( x H y ) )
241, 23eqtri 2644 1  |-  F  =  ( x  e.  B ,  y  e.  B  |->  ( x H y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Hom chom 15952   Hom f chomf 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-homf 16331
This theorem is referenced by:  fnhomeqhomf  16351  homfval  16352  homffn  16353  homfeq  16354  oppchomf  16380  reschomf  16491
  Copyright terms: Public domain W3C validator