MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeq Structured version   Visualization version   Unicode version

Theorem homfeq 16354
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
homfeq.h  |-  H  =  ( Hom  `  C
)
homfeq.j  |-  J  =  ( Hom  `  D
)
homfeq.1  |-  ( ph  ->  B  =  ( Base `  C ) )
homfeq.2  |-  ( ph  ->  B  =  ( Base `  D ) )
Assertion
Ref Expression
homfeq  |-  ( ph  ->  ( ( Hom f  `  C )  =  ( Hom f  `  D )  <->  A. x  e.  B  A. y  e.  B  ( x H y )  =  ( x J y ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, H, y    ph, x, y    x, J, y

Proof of Theorem homfeq
StepHypRef Expression
1 homfeq.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  C ) )
2 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x H y )  =  ( x H y ) )
31, 1, 2mpt2eq123dv 6717 . . . 4  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  ( x H y ) )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( x H y ) ) )
4 eqid 2622 . . . . 5  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
5 eqid 2622 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
6 homfeq.h . . . . 5  |-  H  =  ( Hom  `  C
)
74, 5, 6homffval 16350 . . . 4  |-  ( Hom f  `  C )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( x H y ) )
83, 7syl6reqr 2675 . . 3  |-  ( ph  ->  ( Hom f  `  C )  =  ( x  e.  B ,  y  e.  B  |->  ( x H y ) ) )
9 homfeq.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  D ) )
10 eqidd 2623 . . . . 5  |-  ( ph  ->  ( x J y )  =  ( x J y ) )
119, 9, 10mpt2eq123dv 6717 . . . 4  |-  ( ph  ->  ( x  e.  B ,  y  e.  B  |->  ( x J y ) )  =  ( x  e.  ( Base `  D ) ,  y  e.  ( Base `  D
)  |->  ( x J y ) ) )
12 eqid 2622 . . . . 5  |-  ( Hom f  `  D )  =  ( Hom f  `  D )
13 eqid 2622 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
14 homfeq.j . . . . 5  |-  J  =  ( Hom  `  D
)
1512, 13, 14homffval 16350 . . . 4  |-  ( Hom f  `  D )  =  ( x  e.  ( Base `  D ) ,  y  e.  ( Base `  D
)  |->  ( x J y ) )
1611, 15syl6reqr 2675 . . 3  |-  ( ph  ->  ( Hom f  `  D )  =  ( x  e.  B ,  y  e.  B  |->  ( x J y ) ) )
178, 16eqeq12d 2637 . 2  |-  ( ph  ->  ( ( Hom f  `  C )  =  ( Hom f  `  D )  <-> 
( x  e.  B ,  y  e.  B  |->  ( x H y ) )  =  ( x  e.  B , 
y  e.  B  |->  ( x J y ) ) ) )
18 ovex 6678 . . . 4  |-  ( x H y )  e. 
_V
1918rgen2w 2925 . . 3  |-  A. x  e.  B  A. y  e.  B  ( x H y )  e. 
_V
20 mpt22eqb 6769 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x H y )  e.  _V  ->  (
( x  e.  B ,  y  e.  B  |->  ( x H y ) )  =  ( x  e.  B , 
y  e.  B  |->  ( x J y ) )  <->  A. x  e.  B  A. y  e.  B  ( x H y )  =  ( x J y ) ) )
2119, 20ax-mp 5 . 2  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x H y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x J y ) )  <->  A. x  e.  B  A. y  e.  B  ( x H y )  =  ( x J y ) )
2217, 21syl6bb 276 1  |-  ( ph  ->  ( ( Hom f  `  C )  =  ( Hom f  `  D )  <->  A. x  e.  B  A. y  e.  B  ( x H y )  =  ( x J y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Hom chom 15952   Hom f chomf 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-homf 16331
This theorem is referenced by:  homfeqd  16355  fullresc  16511  resssetc  16742  resscatc  16755
  Copyright terms: Public domain W3C validator