HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   Unicode version

Theorem homulass 28661
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  x.  B )  .op  T
)  =  ( A 
.op  ( B  .op  T ) ) )

Proof of Theorem homulass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mulcl 10020 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
2 homval 28600 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A  x.  B )  .op  T ) `  x )  =  ( ( A  x.  B )  .h  ( T `  x
) ) )
31, 2syl3an1 1359 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( ( A  x.  B
)  .h  ( T `
 x ) ) )
433expia 1267 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  T : ~H --> ~H )  ->  ( x  e.  ~H  ->  (
( ( A  x.  B )  .op  T
) `  x )  =  ( ( A  x.  B )  .h  ( T `  x
) ) ) )
543impa 1259 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( x  e.  ~H  ->  ( ( ( A  x.  B )  .op  T ) `  x )  =  ( ( A  x.  B )  .h  ( T `  x
) ) ) )
65imp 445 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( ( A  x.  B
)  .h  ( T `
 x ) ) )
7 homval 28600 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( B  .op  T ) `  x )  =  ( B  .h  ( T `  x ) ) )
87oveq2d 6666 . . . . . . . 8  |-  ( ( B  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( A  .h  (
( B  .op  T
) `  x )
)  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
983expa 1265 . . . . . . 7  |-  ( ( ( B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( B  .op  T ) `  x ) )  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
1093adantl1 1217 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( B  .op  T ) `  x ) )  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
11 ffvelrn 6357 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
12 ax-hvmulass 27864 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( T `  x )  e.  ~H )  ->  (
( A  x.  B
)  .h  ( T `
 x ) )  =  ( A  .h  ( B  .h  ( T `  x )
) ) )
1311, 12syl3an3 1361 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( T : ~H --> ~H  /\  x  e.  ~H )
)  ->  ( ( A  x.  B )  .h  ( T `  x
) )  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
14133expa 1265 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( T : ~H
--> ~H  /\  x  e. 
~H ) )  -> 
( ( A  x.  B )  .h  ( T `  x )
)  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
1514exp43 640 . . . . . . 7  |-  ( A  e.  CC  ->  ( B  e.  CC  ->  ( T : ~H --> ~H  ->  ( x  e.  ~H  ->  ( ( A  x.  B
)  .h  ( T `
 x ) )  =  ( A  .h  ( B  .h  ( T `  x )
) ) ) ) ) )
16153imp1 1280 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A  x.  B )  .h  ( T `  x
) )  =  ( A  .h  ( B  .h  ( T `  x ) ) ) )
1710, 16eqtr4d 2659 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A  .h  ( ( B  .op  T ) `  x ) )  =  ( ( A  x.  B )  .h  ( T `  x ) ) )
186, 17eqtr4d 2659 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( A  .h  ( ( B  .op  T ) `
 x ) ) )
19 homulcl 28618 . . . . . . . 8  |-  ( ( B  e.  CC  /\  T : ~H --> ~H )  ->  ( B  .op  T
) : ~H --> ~H )
20 homval 28600 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( B  .op  T ) : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  ( B  .op  T ) ) `  x )  =  ( A  .h  ( ( B  .op  T ) `  x ) ) )
2119, 20syl3an2 1360 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( B  .op  T ) ) `  x
)  =  ( A  .h  ( ( B 
.op  T ) `  x ) ) )
22213expia 1267 . . . . . 6  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  T : ~H --> ~H )
)  ->  ( x  e.  ~H  ->  ( ( A  .op  ( B  .op  T ) ) `  x
)  =  ( A  .h  ( ( B 
.op  T ) `  x ) ) ) )
23223impb 1260 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( x  e.  ~H  ->  ( ( A  .op  ( B  .op  T ) ) `  x )  =  ( A  .h  ( ( B  .op  T ) `  x ) ) ) )
2423imp 445 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( A 
.op  ( B  .op  T ) ) `  x
)  =  ( A  .h  ( ( B 
.op  T ) `  x ) ) )
2518, 24eqtr4d 2659 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  /\  x  e.  ~H )  ->  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( ( A  .op  ( B  .op  T ) ) `
 x ) )
2625ralrimiva 2966 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  ->  A. x  e.  ~H  ( ( ( A  x.  B )  .op  T ) `  x )  =  ( ( A 
.op  ( B  .op  T ) ) `  x
) )
27 homulcl 28618 . . . 4  |-  ( ( ( A  x.  B
)  e.  CC  /\  T : ~H --> ~H )  ->  ( ( A  x.  B )  .op  T
) : ~H --> ~H )
281, 27stoic3 1701 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  x.  B )  .op  T
) : ~H --> ~H )
29 homulcl 28618 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  .op  T ) : ~H --> ~H )  ->  ( A  .op  ( B  .op  T ) ) : ~H --> ~H )
3019, 29sylan2 491 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  T : ~H --> ~H )
)  ->  ( A  .op  ( B  .op  T
) ) : ~H --> ~H )
31303impb 1260 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( A  .op  ( B  .op  T ) ) : ~H --> ~H )
32 hoeq 28619 . . 3  |-  ( ( ( ( A  x.  B )  .op  T
) : ~H --> ~H  /\  ( A  .op  ( B 
.op  T ) ) : ~H --> ~H )  ->  ( A. x  e. 
~H  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( ( A  .op  ( B  .op  T ) ) `
 x )  <->  ( ( A  x.  B )  .op  T )  =  ( A  .op  ( B 
.op  T ) ) ) )
3328, 31, 32syl2anc 693 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( A. x  e. 
~H  ( ( ( A  x.  B ) 
.op  T ) `  x )  =  ( ( A  .op  ( B  .op  T ) ) `
 x )  <->  ( ( A  x.  B )  .op  T )  =  ( A  .op  ( B 
.op  T ) ) ) )
3426, 33mpbid 222 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  T : ~H --> ~H )  -> 
( ( A  x.  B )  .op  T
)  =  ( A 
.op  ( B  .op  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    x. cmul 9941   ~Hchil 27776    .h csm 27778    .op chot 27796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-mulcl 9998  ax-hilex 27856  ax-hfvmul 27862  ax-hvmulass 27864
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-homul 28590
This theorem is referenced by:  homul12  28664  honegneg  28665  leopmul  28993  nmopleid  28998  opsqrlem1  28999  opsqrlem6  29004
  Copyright terms: Public domain W3C validator