MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgne2 Structured version   Visualization version   Unicode version

Theorem hpgne2 25654
Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p  |-  P  =  ( Base `  G
)
ishpg.i  |-  I  =  (Itv `  G )
ishpg.l  |-  L  =  (LineG `  G )
ishpg.o  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
ishpg.g  |-  ( ph  ->  G  e. TarskiG )
ishpg.d  |-  ( ph  ->  D  e.  ran  L
)
hpgbr.a  |-  ( ph  ->  A  e.  P )
hpgbr.b  |-  ( ph  ->  B  e.  P )
hpgne1.1  |-  ( ph  ->  A ( (hpG `  G ) `  D
) B )
Assertion
Ref Expression
hpgne2  |-  ( ph  ->  -.  B  e.  D
)
Distinct variable groups:    t, A    t, B    D, a, b, t    G, a, b, t    I,
a, b, t    t, L    O, a, b, t    P, a, b, t    ph, t
Allowed substitution hints:    ph( a, b)    A( a, b)    B( a, b)    L( a, b)

Proof of Theorem hpgne2
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . 3  |-  P  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  ( dist `  G )  =  (
dist `  G )
3 ishpg.i . . 3  |-  I  =  (Itv `  G )
4 ishpg.o . . 3  |-  O  =  { <. a ,  b
>.  |  ( (
a  e.  ( P 
\  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }
5 ishpg.l . . 3  |-  L  =  (LineG `  G )
6 ishpg.d . . . 4  |-  ( ph  ->  D  e.  ran  L
)
76ad2antrr 762 . . 3  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  D  e.  ran  L )
8 ishpg.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
98ad2antrr 762 . . 3  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  G  e. TarskiG )
10 hpgbr.b . . . 4  |-  ( ph  ->  B  e.  P )
1110ad2antrr 762 . . 3  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  B  e.  P
)
12 simplr 792 . . 3  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  c  e.  P
)
13 simprr 796 . . 3  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  B O c )
141, 2, 3, 4, 5, 7, 9, 11, 12, 13oppne1 25633 . 2  |-  ( ( ( ph  /\  c  e.  P )  /\  ( A O c  /\  B O c ) )  ->  -.  B  e.  D )
15 hpgne1.1 . . 3  |-  ( ph  ->  A ( (hpG `  G ) `  D
) B )
16 hpgbr.a . . . 4  |-  ( ph  ->  A  e.  P )
171, 3, 5, 4, 8, 6, 16, 10hpgbr 25652 . . 3  |-  ( ph  ->  ( A ( (hpG
`  G ) `  D ) B  <->  E. c  e.  P  ( A O c  /\  B O c ) ) )
1815, 17mpbid 222 . 2  |-  ( ph  ->  E. c  e.  P  ( A O c  /\  B O c ) )
1914, 18r19.29a 3078 1  |-  ( ph  ->  -.  B  e.  D
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571   class class class wbr 4653   {copab 4712   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hpGchpg 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-hpg 25650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator