HomeHome Metamath Proof Explorer
Theorem List (p. 257 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 25601-25700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremragflat3 25601 Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )   =>    |-  ( ph  ->  ( A  =  B  \/  C  =  B )
 )
 
Theoremragcgr 25602 Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  .~  =  (cgrG `  G )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  <" A B C ">  .~  <" D E F "> )   =>    |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )
 
Theoremmotrag 25603 Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  F  e.  ( GIsmt G ) )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )   =>    |-  ( ph  ->  <" ( F `  A ) ( F `
  B ) ( F `  C ) ">  e.  (∟G `  G ) )
 
Theoremragncol 25604 Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C  =/=  B )   =>    |-  ( ph  ->  -.  ( C  e.  ( A L B )  \/  A  =  B ) )
 
Theoremperpln1 25605 Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
 |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A (⟂G `  G ) B )   =>    |-  ( ph  ->  A  e.  ran  L )
 
Theoremperpln2 25606 Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
 |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A (⟂G `  G ) B )   =>    |-  ( ph  ->  B  e.  ran  L )
 
Theoremisperp 25607* Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   =>    |-  ( ph  ->  ( A (⟂G `  G ) B  <->  E. x  e.  ( A  i^i  B ) A. u  e.  A  A. v  e.  B  <" u x v ">  e.  (∟G `  G ) ) )
 
Theoremperpcom 25608 The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   &    |-  ( ph  ->  A (⟂G `  G ) B )   =>    |-  ( ph  ->  B (⟂G `
  G ) A )
 
Theoremperpneq 25609 Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   &    |-  ( ph  ->  A (⟂G `  G ) B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremisperp2 25610* Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   &    |-  ( ph  ->  X  e.  ( A  i^i  B ) )   =>    |-  ( ph  ->  ( A (⟂G `
  G ) B  <->  A. u  e.  A  A. v  e.  B  <" u X v ">  e.  (∟G `  G )
 ) )
 
Theoremisperp2d 25611 One direction of isperp2 25610. (Contributed by Thierry Arnoux, 10-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   &    |-  ( ph  ->  X  e.  ( A  i^i  B ) )   &    |-  ( ph  ->  U  e.  A )   &    |-  ( ph  ->  V  e.  B )   &    |-  ( ph  ->  A (⟂G `  G ) B )   =>    |-  ( ph  ->  <" U X V ">  e.  (∟G `  G ) )
 
Theoremragperp 25612 Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  B  e.  ran  L )   &    |-  ( ph  ->  X  e.  ( A  i^i  B ) )   &    |-  ( ph  ->  U  e.  A )   &    |-  ( ph  ->  V  e.  B )   &    |-  ( ph  ->  U  =/=  X )   &    |-  ( ph  ->  V  =/=  X )   &    |-  ( ph  ->  <" U X V ">  e.  (∟G `  G )
 )   =>    |-  ( ph  ->  A (⟂G `
  G ) B )
 
Theoremfootex 25613* Lemma for foot 25614: existence part. (Contributed by Thierry Arnoux, 19-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  -.  C  e.  A )   =>    |-  ( ph  ->  E. x  e.  A  ( C L x ) (⟂G `  G ) A )
 
Theoremfoot 25614* From a point  C outside of a line  A, there exists a unique point  x on  A such that  ( C L x ) is perpendicular to  A. That point is called the foot from  C on  A. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  -.  C  e.  A )   =>    |-  ( ph  ->  E! x  e.  A  ( C L x ) (⟂G `  G ) A )
 
Theoremfootne 25615 Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  ( X L Y ) (⟂G `  G ) A )   =>    |-  ( ph  ->  -.  Y  e.  A )
 
Theoremfooteq 25616 Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  A )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  ( X L Z ) (⟂G `  G ) A )   &    |-  ( ph  ->  ( Y L Z ) (⟂G `  G ) A )   =>    |-  ( ph  ->  X  =  Y )
 
Theoremhlperpnel 25617 A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  ran  L )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  U  e.  A )   &    |-  ( ph  ->  V  e.  P )   &    |-  ( ph  ->  W  e.  P )   &    |-  ( ph  ->  A (⟂G `  G ) ( U L V ) )   &    |-  ( ph  ->  V ( K `  U ) W )   =>    |-  ( ph  ->  -.  W  e.  A )
 
Theoremperprag 25618 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  ( A L B ) )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( C L D ) )   =>    |-  ( ph  ->  <" A C D ">  e.  (∟G `  G ) )
 
TheoremperpdragALT 25619 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D (⟂G `  G ) ( B L C ) )   =>    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )
 
Theoremperpdrag 25620 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D (⟂G `  G ) ( B L C ) )   =>    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )
 
Theoremcolperp 25621 Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) D )   &    |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )   &    |-  ( ph  ->  A  =/=  C )   =>    |-  ( ph  ->  ( A L C ) (⟂G `  G ) D )
 
Theoremcolperpexlem1 25622 Lemma for colperp 25621. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  M  =  ( S `  A )   &    |-  N  =  ( S `
  B )   &    |-  K  =  ( S `  Q )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )   &    |-  ( ph  ->  ( K `  ( M `  C ) )  =  ( N `  C ) )   =>    |-  ( ph  ->  <" B A Q ">  e.  (∟G `  G ) )
 
Theoremcolperpexlem2 25623 Lemma for colperpex 25625. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  M  =  ( S `  A )   &    |-  N  =  ( S `
  B )   &    |-  K  =  ( S `  Q )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )   &    |-  ( ph  ->  ( K `  ( M `  C ) )  =  ( N `  C ) )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  A  =/=  Q )
 
Theoremcolperpexlem3 25624* Lemma for colperpex 25625. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  -.  C  e.  ( A L B ) )   =>    |-  ( ph  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  E. t  e.  P  ( ( t  e.  ( A L B )  \/  A  =  B ) 
 /\  t  e.  ( C I p ) ) ) )
 
Theoremcolperpex 25625* In dimension 2 and above, on a line 
( A L B ) there is always a perpendicular  P from  A on a given plane (here given by  C, in case  C does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  GDimTarskiG 2 )   =>    |-  ( ph  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G ) ( A L B )  /\  E. t  e.  P  ( ( t  e.  ( A L B )  \/  A  =  B ) 
 /\  t  e.  ( C I p ) ) ) )
 
Theoremmideulem2 25626 Lemma for opphllem 25627, which is itself used for mideu 25630. (Contributed by Thierry Arnoux, 19-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  O  e.  P )   &    |-  ( ph  ->  T  e.  P )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( Q L B ) )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( A L O ) )   &    |-  ( ph  ->  T  e.  ( A L B ) )   &    |-  ( ph  ->  T  e.  ( Q I O ) )   &    |-  ( ph  ->  R  e.  P )   &    |-  ( ph  ->  R  e.  ( B I Q ) )   &    |-  ( ph  ->  ( A  .-  O )  =  ( B  .-  R )
 )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  X  e.  ( T I B ) )   &    |-  ( ph  ->  X  e.  ( R I O ) )   &    |-  ( ph  ->  Z  e.  P )   &    |-  ( ph  ->  X  e.  ( ( ( S `  A ) `
  O ) I Z ) )   &    |-  ( ph  ->  ( X  .-  Z )  =  ( X  .-  R ) )   &    |-  ( ph  ->  M  e.  P )   &    |-  ( ph  ->  R  =  ( ( S `
  M ) `  Z ) )   =>    |-  ( ph  ->  B  =  M )
 
Theoremopphllem 25627* Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 25628 and later for opphl 25646. (Contributed by Thierry Arnoux, 21-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  O  e.  P )   &    |-  ( ph  ->  T  e.  P )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( Q L B ) )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( A L O ) )   &    |-  ( ph  ->  T  e.  ( A L B ) )   &    |-  ( ph  ->  T  e.  ( Q I O ) )   &    |-  ( ph  ->  R  e.  P )   &    |-  ( ph  ->  R  e.  ( B I Q ) )   &    |-  ( ph  ->  ( A  .-  O )  =  ( B  .-  R )
 )   =>    |-  ( ph  ->  E. x  e.  P  ( B  =  ( ( S `  x ) `  A )  /\  O  =  ( ( S `  x ) `  R ) ) )
 
Theoremmideulem 25628* Lemma for mideu 25630. We can assume mideulem.9 "without loss of generality" (Contributed by Thierry Arnoux, 25-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  O  e.  P )   &    |-  ( ph  ->  T  e.  P )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( Q L B ) )   &    |-  ( ph  ->  ( A L B ) (⟂G `  G ) ( A L O ) )   &    |-  ( ph  ->  T  e.  ( A L B ) )   &    |-  ( ph  ->  T  e.  ( Q I O ) )   &    |-  ( ph  ->  ( A  .-  O )
 (≤G `  G )
 ( B  .-  Q ) )   =>    |-  ( ph  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
 
Theoremmidex 25629* Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  GDimTarskiG 2 )   =>    |-  ( ph  ->  E. x  e.  P  B  =  ( ( S `  x ) `  A ) )
 
Theoremmideu 25630* Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  GDimTarskiG 2 )   =>    |-  ( ph  ->  E! x  e.  P  B  =  ( ( S `  x ) `  A ) )
 
15.2.14  Half-planes
 
Theoremislnopp 25631* The property for two points  A and  B to lie on the opposite sides of a set  D Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A O B  <->  ( ( -.  A  e.  D  /\  -.  B  e.  D ) 
 /\  E. t  e.  D  t  e.  ( A I B ) ) ) )
 
Theoremislnoppd 25632* Deduce that  A and  B lie on opposite sides of line  L. (Contributed by Thierry Arnoux, 16-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  -.  A  e.  D )   &    |-  ( ph  ->  -.  B  e.  D )   &    |-  ( ph  ->  C  e.  ( A I B ) )   =>    |-  ( ph  ->  A O B )
 
Theoremoppne1 25633* Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  -.  A  e.  D )
 
Theoremoppne2 25634* Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  -.  B  e.  D )
 
Theoremoppne3 25635* Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremoppcom 25636* Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  B O A )
 
Theoremopptgdim2 25637* If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  GDimTarskiG 2 )
 
Theoremoppnid 25638* The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  -.  A O A )
 
Theoremopphllem1 25639* Lemma for opphl 25646. (Contributed by Thierry Arnoux, 20-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  M  e.  D )   &    |-  ( ph  ->  A  =  ( S `  C ) )   &    |-  ( ph  ->  A  =/=  R )   &    |-  ( ph  ->  B  =/=  R )   &    |-  ( ph  ->  B  e.  ( R I A ) )   =>    |-  ( ph  ->  B O C )
 
Theoremopphllem2 25640* Lemma for opphl 25646. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  S  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  M  e.  D )   &    |-  ( ph  ->  A  =  ( S `  C ) )   &    |-  ( ph  ->  A  =/=  R )   &    |-  ( ph  ->  B  =/=  R )   &    |-  ( ph  ->  ( A  e.  ( R I B )  \/  B  e.  ( R I A ) ) )   =>    |-  ( ph  ->  B O C )
 
Theoremopphllem3 25641* Lemma for opphl 25646: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  N  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  S  e.  D )   &    |-  ( ph  ->  M  e.  P )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  D (⟂G `  G ) ( A L R ) )   &    |-  ( ph  ->  D (⟂G `  G ) ( C L S ) )   &    |-  ( ph  ->  R  =/=  S )   &    |-  ( ph  ->  ( S  .-  C ) (≤G `  G ) ( R 
 .-  A ) )   &    |-  ( ph  ->  U  e.  P )   &    |-  ( ph  ->  ( N `  R )  =  S )   =>    |-  ( ph  ->  ( U ( K `  R ) A  <->  ( N `  U ) ( K `
  S ) C ) )
 
Theoremopphllem4 25642* Lemma for opphl 25646. (Contributed by Thierry Arnoux, 22-Feb-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  N  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  S  e.  D )   &    |-  ( ph  ->  M  e.  P )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  D (⟂G `  G ) ( A L R ) )   &    |-  ( ph  ->  D (⟂G `  G ) ( C L S ) )   &    |-  ( ph  ->  R  =/=  S )   &    |-  ( ph  ->  ( S  .-  C ) (≤G `  G ) ( R 
 .-  A ) )   &    |-  ( ph  ->  U  e.  P )   &    |-  ( ph  ->  ( N `  R )  =  S )   &    |-  ( ph  ->  V  e.  P )   &    |-  ( ph  ->  U ( K `  R ) A )   &    |-  ( ph  ->  V ( K `  S ) C )   =>    |-  ( ph  ->  U O V )
 
Theoremopphllem5 25643* Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  N  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  S  e.  D )   &    |-  ( ph  ->  M  e.  P )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  D (⟂G `  G ) ( A L R ) )   &    |-  ( ph  ->  D (⟂G `  G ) ( C L S ) )   &    |-  ( ph  ->  U  e.  P )   &    |-  ( ph  ->  V  e.  P )   &    |-  ( ph  ->  U ( K `  R ) A )   &    |-  ( ph  ->  V ( K `  S ) C )   =>    |-  ( ph  ->  U O V )
 
Theoremopphllem6 25644* First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  N  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  S  e.  D )   &    |-  ( ph  ->  M  e.  P )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  D (⟂G `  G ) ( A L R ) )   &    |-  ( ph  ->  D (⟂G `  G ) ( C L S ) )   &    |-  ( ph  ->  U  e.  P )   &    |-  ( ph  ->  ( N `  R )  =  S )   =>    |-  ( ph  ->  ( U ( K `  R ) A  <->  ( N `  U ) ( K `
  S ) C ) )
 
Theoremoppperpex 25645* Restating colperpex 25625 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  -.  C  e.  D )   &    |-  ( ph  ->  GDimTarskiG 2 )   =>    |-  ( ph  ->  E. p  e.  P  ( ( A L p ) (⟂G `  G ) D  /\  C O p ) )
 
Theoremopphl 25646* If two points  A and  C lie on the opposite side of a line  D then any point of the half line ( R  A) also lies opposite to  C. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  A O C )   &    |-  ( ph  ->  R  e.  D )   &    |-  ( ph  ->  A ( K `  R ) B )   =>    |-  ( ph  ->  B O C )
 
Theoremoutpasch 25647* Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  R  e.  P )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  C  e.  ( A I R ) )   &    |-  ( ph  ->  Q  e.  ( B I C ) )   =>    |-  ( ph  ->  E. x  e.  P  ( x  e.  ( A I B )  /\  Q  e.  ( R I x ) ) )
 
Theoremhlpasch 25648* An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  C ( K `  B ) D )   &    |-  ( ph  ->  A  e.  ( X I C ) )   =>    |-  ( ph  ->  E. e  e.  P  ( A ( K `  B ) e  /\  e  e.  ( X I D ) ) )
 
Syntaxchpg 25649 "Belong to the same open half-plane" relation for points in a geometry.
 class hpG
 
Definitiondf-hpg 25650* Define the open half plane relation for a geometry  G. Definition 9.7 of [Schwabhauser] p. 71. See hpgbr 25652 to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |- hpG 
 =  ( g  e. 
 _V  |->  ( d  e. 
 ran  (LineG `  g )  |->  { <. a ,  b >.  |  [. ( Base `  g )  /  p ].
 [. (Itv `  g
 )  /  i ]. E. c  e.  p  ( ( ( a  e.  ( p  \  d )  /\  c  e.  ( p  \  d
 ) )  /\  E. t  e.  d  t  e.  ( a i c ) )  /\  (
 ( b  e.  ( p  \  d )  /\  c  e.  ( p  \  d ) )  /\  E. t  e.  d  t  e.  ( b i c ) ) ) } ) )
 
Theoremishpg 25651* Value of the half-plane relation for a given line  D. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   =>    |-  ( ph  ->  ( (hpG `  G ) `  D )  =  { <. a ,  b >.  |  E. c  e.  P  ( a O c  /\  b O c ) } )
 
Theoremhpgbr 25652* Half-planes : property for points 
A and  B to belong to the same open half plane delimited by line  D. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A ( (hpG `  G ) `  D ) B  <->  E. c  e.  P  ( A O c  /\  B O c ) ) )
 
Theoremhpgne1 25653* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A ( (hpG `  G ) `  D ) B )   =>    |-  ( ph  ->  -.  A  e.  D )
 
Theoremhpgne2 25654* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A ( (hpG `  G ) `  D ) B )   =>    |-  ( ph  ->  -.  B  e.  D )
 
Theoremlnopp2hpgb 25655* Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  A O C )   =>    |-  ( ph  ->  ( B O C  <->  A ( (hpG `  G ) `  D ) B ) )
 
Theoremlnoppnhpg 25656* If two points lie on the opposite side of a line  D, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) ) 
 /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A O B )   =>    |-  ( ph  ->  -.  A ( (hpG `  G ) `  D ) B )
 
Theoremhpgerlem 25657* Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  -.  A  e.  D )   =>    |-  ( ph  ->  E. c  e.  P  A O c )
 
Theoremhpgid 25658* The half-plane relation is reflexive. Theorem 9.11 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  -.  A  e.  D )   =>    |-  ( ph  ->  A ( (hpG `  G ) `  D ) A )
 
Theoremhpgcom 25659* The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A ( (hpG `  G ) `  D ) B )   =>    |-  ( ph  ->  B (
 (hpG `  G ) `  D ) A )
 
Theoremhpgtr 25660* The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  A ( (hpG `  G ) `  D ) B )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  B ( (hpG `  G ) `  D ) C )   =>    |-  ( ph  ->  A ( (hpG `  G ) `  D ) C )
 
Theoremcolopp 25661* Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )   =>    |-  ( ph  ->  ( A O B  <->  ( C  e.  ( A I B ) 
 /\  -.  A  e.  D  /\  -.  B  e.  D ) ) )
 
Theoremcolhp 25662* Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  D )   &    |-  ( ph  ->  ( C  e.  ( A L B )  \/  A  =  B ) )   &    |-  K  =  (hlG `  G )   =>    |-  ( ph  ->  ( A ( (hpG `  G ) `  D ) B  <->  ( A ( K `  C ) B  /\  -.  A  e.  D ) ) )
 
Theoremhphl 25663* If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  ( a I b ) ) }   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  -.  B  e.  D )   &    |-  ( ph  ->  B ( K `  A ) C )   =>    |-  ( ph  ->  B ( (hpG `  G ) `  D ) C )
 
15.2.15  Midpoints and Line Mirroring
 
Syntaxcmid 25664 Declare the constant for the midpoint operation.
 class midG
 
Syntaxclmi 25665 Declare the constant for the line mirroring function.
 class lInvG
 
Definitiondf-mid 25666* Define the midpoint operation. Definition 10.1 of [Schwabhauser] p. 88. See ismidb 25670, midbtwn 25671, and midcgr 25672. (Contributed by Thierry Arnoux, 9-Jun-2019.)
 |- midG  =  ( g  e.  _V  |->  ( a  e.  ( Base `  g ) ,  b  e.  ( Base `  g )  |->  ( iota_ m  e.  ( Base `  g
 ) b  =  ( ( (pInvG `  g
 ) `  m ) `  a ) ) ) )
 
Definitiondf-lmi 25667* Define the line mirroring function. Definition 10.3 of [Schwabhauser] p. 89. See islmib 25679. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |- lInvG  =  ( g  e.  _V  |->  ( m  e.  ran  (LineG `  g )  |->  ( a  e.  ( Base `  g )  |->  ( iota_ b  e.  ( Base `  g
 ) ( ( a (midG `  g )
 b )  e.  m  /\  ( m (⟂G `  g
 ) ( a (LineG `  g ) b )  \/  a  =  b ) ) ) ) ) )
 
Theoremmidf 25668 Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   =>    |-  ( ph  ->  (midG `  G ) : ( P  X.  P ) --> P )
 
Theoremmidcl 25669 Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A (midG `  G ) B )  e.  P )
 
Theoremismidb 25670 Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  S  =  (pInvG `  G )   &    |-  ( ph  ->  M  e.  P )   =>    |-  ( ph  ->  ( B  =  ( ( S `  M ) `
  A )  <->  ( A (midG `  G ) B )  =  M ) )
 
Theoremmidbtwn 25671 Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A (midG `  G ) B )  e.  ( A I B ) )
 
Theoremmidcgr 25672 Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  ( A (midG `  G ) B )  =  C )   =>    |-  ( ph  ->  ( C  .-  A )  =  ( C  .-  B ) )
 
Theoremmidid 25673 Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A (midG `  G ) A )  =  A )
 
Theoremmidcom 25674 Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( A (midG `  G ) B )  =  ( B (midG `  G ) A ) )
 
Theoremmirmid 25675 Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  S  =  ( (pInvG `  G ) `  M )   &    |-  ( ph  ->  M  e.  P )   =>    |-  ( ph  ->  (
 ( S `  A ) (midG `  G )
 ( S `  B ) )  =  ( S `  ( A (midG `  G ) B ) ) )
 
Theoremlmieu 25676* Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  E! b  e.  P  (
 ( A (midG `  G ) b )  e.  D  /\  ( D (⟂G `  G ) ( A L b )  \/  A  =  b ) ) )
 
Theoremlmif 25677 Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   =>    |-  ( ph  ->  M : P --> P )
 
Theoremlmicl 25678 Closure of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  ( M `  A )  e.  P )
 
Theoremislmib 25679 Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  ( B  =  ( M `  A )  <->  ( ( A (midG `  G ) B )  e.  D  /\  ( D (⟂G `  G ) ( A L B )  \/  A  =  B ) ) ) )
 
Theoremlmicom 25680 The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  ( M `  A )  =  B )   =>    |-  ( ph  ->  ( M `  B )  =  A )
 
Theoremlmilmi 25681 Line mirroring is an involution. Theorem 10.5 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  ( M `  ( M `  A ) )  =  A )
 
Theoremlmireu 25682* Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  E! b  e.  P  ( M `  b )  =  A )
 
Theoremlmieq 25683 Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  ( M `  A )  =  ( M `  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremlmiinv 25684 The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   =>    |-  ( ph  ->  (
 ( M `  A )  =  A  <->  A  e.  D ) )
 
Theoremlmicinv 25685 The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  A  e.  D )   =>    |-  ( ph  ->  ( M `  A )  =  A )
 
Theoremlmimid 25686 If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  S  =  ( (pInvG `  G ) `  B )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ( M `  C )  =  ( S `  C ) )
 
Theoremlmif1o 25687 The line mirroring function  M is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   =>    |-  ( ph  ->  M : P -1-1-onto-> P )
 
Theoremlmiisolem 25688 Lemma for lmiiso 25689. (Contributed by Thierry Arnoux, 14-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  S  =  ( (pInvG `  G ) `  Z )   &    |-  Z  =  ( ( A (midG `  G ) ( M `
  A ) ) (midG `  G )
 ( B (midG `  G ) ( M `
  B ) ) )   =>    |-  ( ph  ->  (
 ( M `  A )  .-  ( M `  B ) )  =  ( A  .-  B ) )
 
Theoremlmiiso 25689 The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   =>    |-  ( ph  ->  (
 ( M `  A )  .-  ( M `  B ) )  =  ( A  .-  B ) )
 
Theoremlmimot 25690 Line mirroring is a motion of the geometric space. Theorem 10.11 of [Schwabhauser] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  D  e.  ran  L )   =>    |-  ( ph  ->  M  e.  ( GIsmt G ) )
 
Theoremhypcgrlem1 25691 Lemma for hypcgr 25693, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )   &    |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E )
 )   &    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )   &    |-  ( ph  ->  B  =  E )   &    |-  S  =  ( (lInvG `  G ) `  ( ( A (midG `  G ) D ) (LineG `  G ) B ) )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )
 
Theoremhypcgrlem2 25692 Lemma for hypcgr 25693, case where triangles share one vertex  B. (Contributed by Thierry Arnoux, 16-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )   &    |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E )
 )   &    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )   &    |-  ( ph  ->  B  =  E )   &    |-  S  =  ( (lInvG `  G ) `  ( ( C (midG `  G ) F ) (LineG `  G ) B ) )   =>    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )
 
Theoremhypcgr 25693 If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  <" A B C ">  e.  (∟G `  G )
 )   &    |-  ( ph  ->  <" D E F ">  e.  (∟G `  G ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E )
 )   &    |-  ( ph  ->  ( B  .-  C )  =  ( E  .-  F ) )   =>    |-  ( ph  ->  ( A  .-  C )  =  ( D  .-  F ) )
 
Theoremlmiopp 25694* Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  M  =  ( (lInvG `  G ) `  D )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  -.  A  e.  D )   =>    |-  ( ph  ->  A O ( M `  A ) )
 
Theoremlnperpex 25695* Existence of a perpendicular to a line  L at a given point  A. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  GDimTarskiG 2 )   &    |-  ( ph  ->  D  e.  ran  L )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  D )  /\  b  e.  ( P  \  D ) )  /\  E. t  e.  D  t  e.  (
 a I b ) ) }   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  Q  e.  P )   &    |-  ( ph  ->  -.  Q  e.  D )   =>    |-  ( ph  ->  E. p  e.  P  ( D (⟂G `  G ) ( p L A )  /\  p ( (hpG `  G ) `  D ) Q ) )
 
Theoremtrgcopy 25696* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )   &    |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )   =>    |-  ( ph  ->  E. f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
 
Theoremtrgcopyeulem 25697* Lemma for trgcopyeu 25698. (Contributed by Thierry Arnoux, 8-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )   &    |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )   &    |-  O  =  { <. a ,  b >.  |  ( ( a  e.  ( P  \  ( D L E ) ) 
 /\  b  e.  ( P  \  ( D L E ) ) ) 
 /\  E. t  e.  ( D L E ) t  e.  ( a I b ) ) }   &    |-  ( ph  ->  X  e.  P )   &    |-  ( ph  ->  Y  e.  P )   &    |-  ( ph  ->  <" A B C "> (cgrG `  G ) <" D E X "> )   &    |-  ( ph  ->  <" A B C "> (cgrG `  G ) <" D E Y "> )   &    |-  ( ph  ->  X ( (hpG `  G ) `  ( D L E ) ) F )   &    |-  ( ph  ->  Y ( (hpG `  G ) `  ( D L E ) ) F )   =>    |-  ( ph  ->  X  =  Y )
 
Theoremtrgcopyeu 25698* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
 |-  P  =  ( Base `  G )   &    |-  .-  =  ( dist `  G )   &    |-  I  =  (Itv `  G )   &    |-  L  =  (LineG `  G )   &    |-  K  =  (hlG `  G )   &    |-  ( ph  ->  G  e. TarskiG )   &    |-  ( ph  ->  A  e.  P )   &    |-  ( ph  ->  B  e.  P )   &    |-  ( ph  ->  C  e.  P )   &    |-  ( ph  ->  D  e.  P )   &    |-  ( ph  ->  E  e.  P )   &    |-  ( ph  ->  F  e.  P )   &    |-  ( ph  ->  -.  ( A  e.  ( B L C )  \/  B  =  C ) )   &    |-  ( ph  ->  -.  ( D  e.  ( E L F )  \/  E  =  F ) )   &    |-  ( ph  ->  ( A  .-  B )  =  ( D  .-  E ) )   =>    |-  ( ph  ->  E! f  e.  P  ( <" A B C "> (cgrG `  G ) <" D E f ">  /\  f ( (hpG `  G ) `  ( D L E ) ) F ) )
 
15.2.16  Congruence of angles
 
Syntaxccgra 25699 Declare the constant for the congruence between angles relation.
 class cgrA
 
Definitiondf-cgra 25700* Define the congruence relation bewteen angles. As for triangles we use "words of points". See iscgra 25701 for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020.)
 |- cgrA  =  ( g  e.  _V  |->  {
 <. a ,  b >.  | 
 [. ( Base `  g
 )  /  p ]. [. (hlG `  g )  /  k ]. ( ( a  e.  ( p  ^m  (
 0..^ 3 ) ) 
 /\  b  e.  ( p  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  p  E. y  e.  p  (
 a (cgrG `  g
 ) <" x ( b `  1 ) y ">  /\  x ( k `  (
 b `  1 )
 ) ( b `  0 )  /\  y ( k `  ( b `
  1 ) ) ( b `  2
 ) ) ) }
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >