Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idladdcl Structured version   Visualization version   Unicode version

Theorem idladdcl 33818
Description: An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
idladdcl.1  |-  G  =  ( 1st `  R
)
Assertion
Ref Expression
idladdcl  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  ( A  e.  I  /\  B  e.  I
) )  ->  ( A G B )  e.  I )

Proof of Theorem idladdcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idladdcl.1 . . . . . 6  |-  G  =  ( 1st `  R
)
2 eqid 2622 . . . . . 6  |-  ( 2nd `  R )  =  ( 2nd `  R )
3 eqid 2622 . . . . . 6  |-  ran  G  =  ran  G
4 eqid 2622 . . . . . 6  |-  (GId `  G )  =  (GId
`  G )
51, 2, 3, 4isidl 33813 . . . . 5  |-  ( R  e.  RingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  ran  G  /\  (GId `  G )  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  ran  G ( ( z ( 2nd `  R ) x )  e.  I  /\  ( x ( 2nd `  R ) z )  e.  I ) ) ) ) )
65biimpa 501 . . . 4  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  (
I  C_  ran  G  /\  (GId `  G )  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  ran  G ( ( z ( 2nd `  R ) x )  e.  I  /\  (
x ( 2nd `  R
) z )  e.  I ) ) ) )
76simp3d 1075 . . 3  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  ran  G ( ( z ( 2nd `  R ) x )  e.  I  /\  (
x ( 2nd `  R
) z )  e.  I ) ) )
8 simpl 473 . . . 4  |-  ( ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  ran  G
( ( z ( 2nd `  R ) x )  e.  I  /\  ( x ( 2nd `  R ) z )  e.  I ) )  ->  A. y  e.  I 
( x G y )  e.  I )
98ralimi 2952 . . 3  |-  ( A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  ran  G
( ( z ( 2nd `  R ) x )  e.  I  /\  ( x ( 2nd `  R ) z )  e.  I ) )  ->  A. x  e.  I  A. y  e.  I 
( x G y )  e.  I )
107, 9syl 17 . 2  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  A. x  e.  I  A. y  e.  I  ( x G y )  e.  I )
11 oveq1 6657 . . . 4  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
1211eleq1d 2686 . . 3  |-  ( x  =  A  ->  (
( x G y )  e.  I  <->  ( A G y )  e.  I ) )
13 oveq2 6658 . . . 4  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
1413eleq1d 2686 . . 3  |-  ( y  =  B  ->  (
( A G y )  e.  I  <->  ( A G B )  e.  I
) )
1512, 14rspc2v 3322 . 2  |-  ( ( A  e.  I  /\  B  e.  I )  ->  ( A. x  e.  I  A. y  e.  I  ( x G y )  e.  I  ->  ( A G B )  e.  I ) )
1610, 15mpan9 486 1  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  ( A  e.  I  /\  B  e.  I
) )  ->  ( A G B )  e.  I )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693   Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-idl 33809
This theorem is referenced by:  idlsubcl  33822  intidl  33828  unichnidl  33830
  Copyright terms: Public domain W3C validator