Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intidl Structured version   Visualization version   Unicode version

Theorem intidl 33828
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
intidl  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  |^| C  e.  ( Idl `  R
) )

Proof of Theorem intidl
Dummy variables  i  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4499 . . . 4  |-  ( C  =/=  (/)  ->  |^| C  C_  U. C )
213ad2ant2 1083 . . 3  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  |^| C  C_  U. C )
3 ssel2 3598 . . . . . . . 8  |-  ( ( C  C_  ( Idl `  R )  /\  i  e.  C )  ->  i  e.  ( Idl `  R
) )
4 eqid 2622 . . . . . . . . 9  |-  ( 1st `  R )  =  ( 1st `  R )
5 eqid 2622 . . . . . . . . 9  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
64, 5idlss 33815 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  i  C_ 
ran  ( 1st `  R
) )
73, 6sylan2 491 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( C  C_  ( Idl `  R
)  /\  i  e.  C ) )  -> 
i  C_  ran  ( 1st `  R ) )
87anassrs 680 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  i  e.  C )  ->  i  C_ 
ran  ( 1st `  R
) )
98ralrimiva 2966 . . . . 5  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  A. i  e.  C  i  C_  ran  ( 1st `  R
) )
1093adant2 1080 . . . 4  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  A. i  e.  C  i  C_  ran  ( 1st `  R
) )
11 unissb 4469 . . . 4  |-  ( U. C  C_  ran  ( 1st `  R )  <->  A. i  e.  C  i  C_  ran  ( 1st `  R
) )
1210, 11sylibr 224 . . 3  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  U. C  C_  ran  ( 1st `  R
) )
132, 12sstrd 3613 . 2  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  |^| C  C_  ran  ( 1st `  R
) )
14 eqid 2622 . . . . . . . 8  |-  (GId `  ( 1st `  R ) )  =  (GId `  ( 1st `  R ) )
154, 14idl0cl 33817 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (GId `  ( 1st `  R
) )  e.  i )
163, 15sylan2 491 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( C  C_  ( Idl `  R
)  /\  i  e.  C ) )  -> 
(GId `  ( 1st `  R ) )  e.  i )
1716anassrs 680 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  i  e.  C )  ->  (GId `  ( 1st `  R
) )  e.  i )
1817ralrimiva 2966 . . . 4  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  A. i  e.  C  (GId `  ( 1st `  R ) )  e.  i )
19 fvex 6201 . . . . 5  |-  (GId `  ( 1st `  R ) )  e.  _V
2019elint2 4482 . . . 4  |-  ( (GId
`  ( 1st `  R
) )  e.  |^| C 
<-> 
A. i  e.  C  (GId `  ( 1st `  R
) )  e.  i )
2118, 20sylibr 224 . . 3  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  (GId `  ( 1st `  R
) )  e.  |^| C )
22213adant2 1080 . 2  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  (GId `  ( 1st `  R ) )  e.  |^| C )
23 vex 3203 . . . . . 6  |-  x  e. 
_V
2423elint2 4482 . . . . 5  |-  ( x  e.  |^| C  <->  A. i  e.  C  x  e.  i )
25 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
2625elint2 4482 . . . . . . . . 9  |-  ( y  e.  |^| C  <->  A. i  e.  C  y  e.  i )
27 r19.26 3064 . . . . . . . . . . 11  |-  ( A. i  e.  C  (
x  e.  i  /\  y  e.  i )  <->  ( A. i  e.  C  x  e.  i  /\  A. i  e.  C  y  e.  i ) )
284idladdcl 33818 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( x  e.  i  /\  y  e.  i
) )  ->  (
x ( 1st `  R
) y )  e.  i )
2928ex 450 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (
( x  e.  i  /\  y  e.  i )  ->  ( x
( 1st `  R
) y )  e.  i ) )
303, 29sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  ( C  C_  ( Idl `  R
)  /\  i  e.  C ) )  -> 
( ( x  e.  i  /\  y  e.  i )  ->  (
x ( 1st `  R
) y )  e.  i ) )
3130anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  i  e.  C )  ->  (
( x  e.  i  /\  y  e.  i )  ->  ( x
( 1st `  R
) y )  e.  i ) )
3231ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  ( A. i  e.  C  ( x  e.  i  /\  y  e.  i
)  ->  A. i  e.  C  ( x
( 1st `  R
) y )  e.  i ) )
33 ovex 6678 . . . . . . . . . . . . 13  |-  ( x ( 1st `  R
) y )  e. 
_V
3433elint2 4482 . . . . . . . . . . . 12  |-  ( ( x ( 1st `  R
) y )  e. 
|^| C  <->  A. i  e.  C  ( x
( 1st `  R
) y )  e.  i )
3532, 34syl6ibr 242 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  ( A. i  e.  C  ( x  e.  i  /\  y  e.  i
)  ->  ( x
( 1st `  R
) y )  e. 
|^| C ) )
3627, 35syl5bir 233 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  (
( A. i  e.  C  x  e.  i  /\  A. i  e.  C  y  e.  i )  ->  ( x
( 1st `  R
) y )  e. 
|^| C ) )
3736expdimp 453 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  A. i  e.  C  x  e.  i )  ->  ( A. i  e.  C  y  e.  i  ->  ( x ( 1st `  R
) y )  e. 
|^| C ) )
3826, 37syl5bi 232 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  A. i  e.  C  x  e.  i )  ->  (
y  e.  |^| C  ->  ( x ( 1st `  R ) y )  e.  |^| C ) )
3938ralrimiv 2965 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  A. i  e.  C  x  e.  i )  ->  A. y  e.  |^| C ( x ( 1st `  R
) y )  e. 
|^| C )
40 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  R )  =  ( 2nd `  R )
414, 40, 5idllmulcl 33819 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( x  e.  i  /\  z  e.  ran  ( 1st `  R ) ) )  ->  (
z ( 2nd `  R
) x )  e.  i )
4241anass1rs 849 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e. 
ran  ( 1st `  R
) )  /\  x  e.  i )  ->  (
z ( 2nd `  R
) x )  e.  i )
4342ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( x  e.  i  ->  ( z ( 2nd `  R ) x )  e.  i ) )
4443an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R ) )  /\  i  e.  ( Idl `  R ) )  -> 
( x  e.  i  ->  ( z ( 2nd `  R ) x )  e.  i ) )
453, 44sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R ) )  /\  ( C  C_  ( Idl `  R )  /\  i  e.  C ) )  -> 
( x  e.  i  ->  ( z ( 2nd `  R ) x )  e.  i ) )
4645an4s 869 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  (
z  e.  ran  ( 1st `  R )  /\  i  e.  C )
)  ->  ( x  e.  i  ->  ( z ( 2nd `  R
) x )  e.  i ) )
4746anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  i  e.  C )  ->  (
x  e.  i  -> 
( z ( 2nd `  R ) x )  e.  i ) )
4847ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( A. i  e.  C  x  e.  i  ->  A. i  e.  C  ( z ( 2nd `  R
) x )  e.  i ) )
4948imp 445 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  A. i  e.  C  x  e.  i )  ->  A. i  e.  C  ( z
( 2nd `  R
) x )  e.  i )
50 ovex 6678 . . . . . . . . . . . 12  |-  ( z ( 2nd `  R
) x )  e. 
_V
5150elint2 4482 . . . . . . . . . . 11  |-  ( ( z ( 2nd `  R
) x )  e. 
|^| C  <->  A. i  e.  C  ( z
( 2nd `  R
) x )  e.  i )
5249, 51sylibr 224 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  A. i  e.  C  x  e.  i )  ->  (
z ( 2nd `  R
) x )  e. 
|^| C )
534, 40, 5idlrmulcl 33820 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( x  e.  i  /\  z  e.  ran  ( 1st `  R ) ) )  ->  (
x ( 2nd `  R
) z )  e.  i )
5453anass1rs 849 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e. 
ran  ( 1st `  R
) )  /\  x  e.  i )  ->  (
x ( 2nd `  R
) z )  e.  i )
5554ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  -> 
( x  e.  i  ->  ( x ( 2nd `  R ) z )  e.  i ) )
5655an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R ) )  /\  i  e.  ( Idl `  R ) )  -> 
( x  e.  i  ->  ( x ( 2nd `  R ) z )  e.  i ) )
573, 56sylan2 491 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  z  e.  ran  ( 1st `  R ) )  /\  ( C  C_  ( Idl `  R )  /\  i  e.  C ) )  -> 
( x  e.  i  ->  ( x ( 2nd `  R ) z )  e.  i ) )
5857an4s 869 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  (
z  e.  ran  ( 1st `  R )  /\  i  e.  C )
)  ->  ( x  e.  i  ->  ( x ( 2nd `  R
) z )  e.  i ) )
5958anassrs 680 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  i  e.  C )  ->  (
x  e.  i  -> 
( x ( 2nd `  R ) z )  e.  i ) )
6059ralimdva 2962 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  z  e.  ran  ( 1st `  R
) )  ->  ( A. i  e.  C  x  e.  i  ->  A. i  e.  C  ( x ( 2nd `  R
) z )  e.  i ) )
6160imp 445 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  A. i  e.  C  x  e.  i )  ->  A. i  e.  C  ( x
( 2nd `  R
) z )  e.  i )
62 ovex 6678 . . . . . . . . . . . 12  |-  ( x ( 2nd `  R
) z )  e. 
_V
6362elint2 4482 . . . . . . . . . . 11  |-  ( ( x ( 2nd `  R
) z )  e. 
|^| C  <->  A. i  e.  C  ( x
( 2nd `  R
) z )  e.  i )
6461, 63sylibr 224 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  A. i  e.  C  x  e.  i )  ->  (
x ( 2nd `  R
) z )  e. 
|^| C )
6552, 64jca 554 . . . . . . . . 9  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  z  e.  ran  ( 1st `  R ) )  /\  A. i  e.  C  x  e.  i )  ->  (
( z ( 2nd `  R ) x )  e.  |^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) )
6665an32s 846 . . . . . . . 8  |-  ( ( ( ( R  e.  RingOps 
/\  C  C_  ( Idl `  R ) )  /\  A. i  e.  C  x  e.  i )  /\  z  e. 
ran  ( 1st `  R
) )  ->  (
( z ( 2nd `  R ) x )  e.  |^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) )
6766ralrimiva 2966 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  A. i  e.  C  x  e.  i )  ->  A. z  e.  ran  ( 1st `  R
) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) )
6839, 67jca 554 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  /\  A. i  e.  C  x  e.  i )  ->  ( A. y  e.  |^| C
( x ( 1st `  R ) y )  e.  |^| C  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) )
6968ex 450 . . . . 5  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  ( A. i  e.  C  x  e.  i  ->  ( A. y  e.  |^| C ( x ( 1st `  R ) y )  e.  |^| C  /\  A. z  e. 
ran  ( 1st `  R
) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) ) )
7024, 69syl5bi 232 . . . 4  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  (
x  e.  |^| C  ->  ( A. y  e. 
|^| C ( x ( 1st `  R
) y )  e. 
|^| C  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) ) )
7170ralrimiv 2965 . . 3  |-  ( ( R  e.  RingOps  /\  C  C_  ( Idl `  R
) )  ->  A. x  e.  |^| C ( A. y  e.  |^| C ( x ( 1st `  R
) y )  e. 
|^| C  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) )
72713adant2 1080 . 2  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  A. x  e.  |^| C ( A. y  e.  |^| C ( x ( 1st `  R
) y )  e. 
|^| C  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) )
734, 40, 5, 14isidl 33813 . . 3  |-  ( R  e.  RingOps  ->  ( |^| C  e.  ( Idl `  R
)  <->  ( |^| C  C_ 
ran  ( 1st `  R
)  /\  (GId `  ( 1st `  R ) )  e.  |^| C  /\  A. x  e.  |^| C ( A. y  e.  |^| C ( x ( 1st `  R ) y )  e.  |^| C  /\  A. z  e. 
ran  ( 1st `  R
) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) ) ) )
74733ad2ant1 1082 . 2  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  ( |^| C  e.  ( Idl `  R )  <->  ( |^| C  C_  ran  ( 1st `  R )  /\  (GId `  ( 1st `  R
) )  e.  |^| C  /\  A. x  e. 
|^| C ( A. y  e.  |^| C ( x ( 1st `  R
) y )  e. 
|^| C  /\  A. z  e.  ran  ( 1st `  R ) ( ( z ( 2nd `  R
) x )  e. 
|^| C  /\  (
x ( 2nd `  R
) z )  e. 
|^| C ) ) ) ) )
7513, 22, 72, 74mpbir3and 1245 1  |-  ( ( R  e.  RingOps  /\  C  =/=  (/)  /\  C  C_  ( Idl `  R ) )  ->  |^| C  e.  ( Idl `  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|cint 4475   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693   Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-idl 33809
This theorem is referenced by:  inidl  33829  igenidl  33862
  Copyright terms: Public domain W3C validator