MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idlmhm Structured version   Visualization version   Unicode version

Theorem idlmhm 19041
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
idlmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
idlmhm  |-  ( M  e.  LMod  ->  (  _I  |`  B )  e.  ( M LMHom  M ) )

Proof of Theorem idlmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlmhm.b . 2  |-  B  =  ( Base `  M
)
2 eqid 2622 . 2  |-  ( .s
`  M )  =  ( .s `  M
)
3 eqid 2622 . 2  |-  (Scalar `  M )  =  (Scalar `  M )
4 eqid 2622 . 2  |-  ( Base `  (Scalar `  M )
)  =  ( Base `  (Scalar `  M )
)
5 id 22 . 2  |-  ( M  e.  LMod  ->  M  e. 
LMod )
6 eqidd 2623 . 2  |-  ( M  e.  LMod  ->  (Scalar `  M )  =  (Scalar `  M ) )
7 lmodgrp 18870 . . 3  |-  ( M  e.  LMod  ->  M  e. 
Grp )
81idghm 17675 . . 3  |-  ( M  e.  Grp  ->  (  _I  |`  B )  e.  ( M  GrpHom  M ) )
97, 8syl 17 . 2  |-  ( M  e.  LMod  ->  (  _I  |`  B )  e.  ( M  GrpHom  M ) )
101, 3, 2, 4lmodvscl 18880 . . . . 5  |-  ( ( M  e.  LMod  /\  x  e.  ( Base `  (Scalar `  M ) )  /\  y  e.  B )  ->  ( x ( .s
`  M ) y )  e.  B )
11103expb 1266 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  B ) )  -> 
( x ( .s
`  M ) y )  e.  B )
12 fvresi 6439 . . . 4  |-  ( ( x ( .s `  M ) y )  e.  B  ->  (
(  _I  |`  B ) `
 ( x ( .s `  M ) y ) )  =  ( x ( .s
`  M ) y ) )
1311, 12syl 17 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  B ) )  -> 
( (  _I  |`  B ) `
 ( x ( .s `  M ) y ) )  =  ( x ( .s
`  M ) y ) )
14 fvresi 6439 . . . . 5  |-  ( y  e.  B  ->  (
(  _I  |`  B ) `
 y )  =  y )
1514ad2antll 765 . . . 4  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  B ) )  -> 
( (  _I  |`  B ) `
 y )  =  y )
1615oveq2d 6666 . . 3  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  B ) )  -> 
( x ( .s
`  M ) ( (  _I  |`  B ) `
 y ) )  =  ( x ( .s `  M ) y ) )
1713, 16eqtr4d 2659 . 2  |-  ( ( M  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  M )
)  /\  y  e.  B ) )  -> 
( (  _I  |`  B ) `
 ( x ( .s `  M ) y ) )  =  ( x ( .s
`  M ) ( (  _I  |`  B ) `
 y ) ) )
181, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17islmhmd 19039 1  |-  ( M  e.  LMod  ->  (  _I  |`  B )  e.  ( M LMHom  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    _I cid 5023    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422    GrpHom cghm 17657   LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  idnmhm  22558  mendring  37762
  Copyright terms: Public domain W3C validator