| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version Unicode version | ||
| Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| islmhmd.x |
|
| islmhmd.a |
|
| islmhmd.b |
|
| islmhmd.k |
|
| islmhmd.j |
|
| islmhmd.n |
|
| islmhmd.s |
|
| islmhmd.t |
|
| islmhmd.c |
|
| islmhmd.f |
|
| islmhmd.l |
|
| Ref | Expression |
|---|---|
| islmhmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.s |
. . 3
| |
| 2 | islmhmd.t |
. . 3
| |
| 3 | 1, 2 | jca 554 |
. 2
|
| 4 | islmhmd.f |
. . 3
| |
| 5 | islmhmd.c |
. . 3
| |
| 6 | islmhmd.l |
. . . 4
| |
| 7 | 6 | ralrimivva 2971 |
. . 3
|
| 8 | 4, 5, 7 | 3jca 1242 |
. 2
|
| 9 | islmhmd.k |
. . 3
| |
| 10 | islmhmd.j |
. . 3
| |
| 11 | islmhmd.n |
. . 3
| |
| 12 | islmhmd.x |
. . 3
| |
| 13 | islmhmd.a |
. . 3
| |
| 14 | islmhmd.b |
. . 3
| |
| 15 | 9, 10, 11, 12, 13, 14 | islmhm 19027 |
. 2
|
| 16 | 3, 8, 15 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-lmhm 19022 |
| This theorem is referenced by: 0lmhm 19040 idlmhm 19041 invlmhm 19042 lmhmco 19043 lmhmplusg 19044 lmhmvsca 19045 lmhmf1o 19046 reslmhm2 19053 reslmhm2b 19054 pwsdiaglmhm 19057 pwssplit3 19061 frlmup1 20137 |
| Copyright terms: Public domain | W3C validator |