MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordri Structured version   Visualization version   Unicode version

Theorem oewordri 7672
Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of [TakeutiZaring] p. 68. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordri  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )

Proof of Theorem oewordri
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
2 oveq2 6658 . . . . 5  |-  ( x  =  (/)  ->  ( B  ^o  x )  =  ( B  ^o  (/) ) )
31, 2sseq12d 3634 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) ) )
4 oveq2 6658 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
5 oveq2 6658 . . . . 5  |-  ( x  =  y  ->  ( B  ^o  x )  =  ( B  ^o  y
) )
64, 5sseq12d 3634 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  y )  C_  ( B  ^o  y ) ) )
7 oveq2 6658 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
8 oveq2 6658 . . . . 5  |-  ( x  =  suc  y  -> 
( B  ^o  x
)  =  ( B  ^o  suc  y ) )
97, 8sseq12d 3634 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  C_  ( B  ^o  x )  <->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) )
10 oveq2 6658 . . . . 5  |-  ( x  =  C  ->  ( A  ^o  x )  =  ( A  ^o  C
) )
11 oveq2 6658 . . . . 5  |-  ( x  =  C  ->  ( B  ^o  x )  =  ( B  ^o  C
) )
1210, 11sseq12d 3634 . . . 4  |-  ( x  =  C  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
13 onelon 5748 . . . . . . 7  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
14 oe0 7602 . . . . . . 7  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1513, 14syl 17 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  1o )
16 oe0 7602 . . . . . . 7  |-  ( B  e.  On  ->  ( B  ^o  (/) )  =  1o )
1716adantr 481 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( B  ^o  (/) )  =  1o )
1815, 17eqtr4d 2659 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  =  ( B  ^o  (/) ) )
19 eqimss 3657 . . . . 5  |-  ( ( A  ^o  (/) )  =  ( B  ^o  (/) )  -> 
( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
2018, 19syl 17 . . . 4  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  (/) )  C_  ( B  ^o  (/) ) )
21 simpl 473 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  B  e.  On )
22 onelss 5766 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
2322imp 445 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  C_  B )
2413, 21, 23jca31 557 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B ) )
25 oecl 7617 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
26253adant2 1080 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  y )  e.  On )
27 oecl 7617 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y
)  e.  On )
28273adant1 1079 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  y )  e.  On )
29 simp1 1061 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  A  e.  On )
30 omwordri 7652 . . . . . . . . . . . . 13  |-  ( ( ( A  ^o  y
)  e.  On  /\  ( B  ^o  y
)  e.  On  /\  A  e.  On )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) ) )
3126, 28, 29, 30syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  (
( A  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  A ) ) )
3231imp 445 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) )  -> 
( ( A  ^o  y )  .o  A
)  C_  ( ( B  ^o  y )  .o  A ) )
3332adantrl 752 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  A ) )
34 omwordi 7651 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( B  ^o  y )  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3528, 34syld3an3 1371 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  C_  B  ->  (
( B  ^o  y
)  .o  A ) 
C_  ( ( B  ^o  y )  .o  B ) ) )
3635imp 445 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  A  C_  B )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3736adantrr 753 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( B  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
3833, 37sstrd 3613 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( ( A  ^o  y )  .o  A )  C_  (
( B  ^o  y
)  .o  B ) )
39 oesuc 7607 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
40393adant2 1080 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y )  .o  A ) )
4140adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
42 oesuc 7607 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
43423adant1 1079 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y )  .o  B ) )
4443adantr 481 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( B  ^o  suc  y )  =  ( ( B  ^o  y
)  .o  B ) )
4538, 41, 443sstr4d 3648 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  /\  ( A  C_  B  /\  ( A  ^o  y
)  C_  ( B  ^o  y ) ) )  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y ) )
4645exp520 1288 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4746com3r 87 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( A  C_  B  ->  ( ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) ) ) )
4847imp4c 617 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B )  ->  (
( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  suc  y ) 
C_  ( B  ^o  suc  y ) ) ) )
4924, 48syl5 34 . . . 4  |-  ( y  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( ( A  ^o  y )  C_  ( B  ^o  y
)  ->  ( A  ^o  suc  y )  C_  ( B  ^o  suc  y
) ) ) )
50 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
51 limelon 5788 . . . . . . . . . . . 12  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5250, 51mpan 706 . . . . . . . . . . 11  |-  ( Lim  x  ->  x  e.  On )
53 0ellim 5787 . . . . . . . . . . 11  |-  ( Lim  x  ->  (/)  e.  x
)
54 oe0m1 7601 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  ( (/)  ^o  x
)  =  (/) ) )
5554biimpa 501 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  (/) 
e.  x )  -> 
( (/)  ^o  x )  =  (/) )
5652, 53, 55syl2anc 693 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (/)  ^o  x
)  =  (/) )
57 0ss 3972 . . . . . . . . . 10  |-  (/)  C_  ( B  ^o  x )
5856, 57syl6eqss 3655 . . . . . . . . 9  |-  ( Lim  x  ->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) )
59 oveq1 6657 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A  ^o  x )  =  ( (/)  ^o  x
) )
6059sseq1d 3632 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( ( A  ^o  x ) 
C_  ( B  ^o  x )  <->  ( (/)  ^o  x
)  C_  ( B  ^o  x ) ) )
6158, 60syl5ibr 236 . . . . . . . 8  |-  ( A  =  (/)  ->  ( Lim  x  ->  ( A  ^o  x )  C_  ( B  ^o  x ) ) )
6261adantl 482 . . . . . . 7  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A  ^o  x
)  C_  ( B  ^o  x ) ) )
6362a1dd 50 . . . . . 6  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  A  =  (/) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
64 ss2iun 4536 . . . . . . . 8  |-  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y
)  ->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) )
65 oelim 7614 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
6650, 65mpanlr1 722 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\ 
Lim  x )  /\  (/) 
e.  A )  -> 
( A  ^o  x
)  =  U_ y  e.  x  ( A  ^o  y ) )
6766an32s 846 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  (/)  e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
6867adantllr 755 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
6921anim1i 592 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  e.  On  /\  Lim  x
) )
70 ne0i 3921 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  B  =/=  (/) )
71 on0eln0 5780 . . . . . . . . . . . . . . 15  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
7270, 71syl5ibr 236 . . . . . . . . . . . . . 14  |-  ( B  e.  On  ->  ( A  e.  B  ->  (/)  e.  B ) )
7372imp 445 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  A  e.  B )  -> 
(/)  e.  B )
7473adantr 481 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  (/)  e.  B )
75 oelim 7614 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  B )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7650, 75mpanlr1 722 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  -> 
( B  ^o  x
)  =  U_ y  e.  x  ( B  ^o  y ) )
7769, 74, 76syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\  A  e.  B )  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7877adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( B  e.  On  /\  A  e.  B )  /\  (/)  e.  A
)  /\  Lim  x )  ->  ( B  ^o  x )  =  U_ y  e.  x  ( B  ^o  y ) )
7978adantlll 754 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( B  ^o  x )  = 
U_ y  e.  x  ( B  ^o  y
) )
8068, 79sseq12d 3634 . . . . . . . 8  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  (
( A  ^o  x
)  C_  ( B  ^o  x )  <->  U_ y  e.  x  ( A  ^o  y )  C_  U_ y  e.  x  ( B  ^o  y ) ) )
8164, 80syl5ibr 236 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/) 
e.  A )  /\  Lim  x )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) )
8281ex 450 . . . . . 6  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  /\  (/)  e.  A
)  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8363, 82oe0lem 7593 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) )  ->  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  y )  C_  ( B  ^o  y )  -> 
( A  ^o  x
)  C_  ( B  ^o  x ) ) ) )
8413ancri 575 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( A  e.  On  /\  ( B  e.  On  /\  A  e.  B ) ) )
8583, 84syl11 33 . . . 4  |-  ( Lim  x  ->  ( ( B  e.  On  /\  A  e.  B )  ->  ( A. y  e.  x  ( A  ^o  y
)  C_  ( B  ^o  y )  ->  ( A  ^o  x )  C_  ( B  ^o  x
) ) ) )
863, 6, 9, 12, 20, 49, 85tfinds3 7064 . . 3  |-  ( C  e.  On  ->  (
( B  e.  On  /\  A  e.  B )  ->  ( A  ^o  C )  C_  ( B  ^o  C ) ) )
8786expd 452 . 2  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( A  e.  B  -> 
( A  ^o  C
)  C_  ( B  ^o  C ) ) ) )
8887impcom 446 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  ->  ( A  ^o  C
)  C_  ( B  ^o  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   U_ciun 4520   Oncon0 5723   Lim wlim 5724   suc csuc 5725  (class class class)co 6650   1oc1o 7553    .o comu 7558    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oeordsuc  7674
  Copyright terms: Public domain W3C validator