MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   Unicode version

Theorem inf3lem1 8525
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8532 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
inf3lem.2  |-  F  =  ( rec ( G ,  (/) )  |`  om )
inf3lem.3  |-  A  e. 
_V
inf3lem.4  |-  B  e. 
_V
Assertion
Ref Expression
inf3lem1  |-  ( A  e.  om  ->  ( F `  A )  C_  ( F `  suc  A ) )
Distinct variable group:    x, y, w
Allowed substitution hints:    A( x, y, w)    B( x, y, w)    F( x, y, w)    G( x, y, w)

Proof of Theorem inf3lem1
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( v  =  (/)  ->  ( F `
 v )  =  ( F `  (/) ) )
2 suceq 5790 . . . 4  |-  ( v  =  (/)  ->  suc  v  =  suc  (/) )
32fveq2d 6195 . . 3  |-  ( v  =  (/)  ->  ( F `
 suc  v )  =  ( F `  suc  (/) ) )
41, 3sseq12d 3634 . 2  |-  ( v  =  (/)  ->  ( ( F `  v ) 
C_  ( F `  suc  v )  <->  ( F `  (/) )  C_  ( F `  suc  (/) ) ) )
5 fveq2 6191 . . 3  |-  ( v  =  u  ->  ( F `  v )  =  ( F `  u ) )
6 suceq 5790 . . . 4  |-  ( v  =  u  ->  suc  v  =  suc  u )
76fveq2d 6195 . . 3  |-  ( v  =  u  ->  ( F `  suc  v )  =  ( F `  suc  u ) )
85, 7sseq12d 3634 . 2  |-  ( v  =  u  ->  (
( F `  v
)  C_  ( F `  suc  v )  <->  ( F `  u )  C_  ( F `  suc  u ) ) )
9 fveq2 6191 . . 3  |-  ( v  =  suc  u  -> 
( F `  v
)  =  ( F `
 suc  u )
)
10 suceq 5790 . . . 4  |-  ( v  =  suc  u  ->  suc  v  =  suc  suc  u )
1110fveq2d 6195 . . 3  |-  ( v  =  suc  u  -> 
( F `  suc  v )  =  ( F `  suc  suc  u ) )
129, 11sseq12d 3634 . 2  |-  ( v  =  suc  u  -> 
( ( F `  v )  C_  ( F `  suc  v )  <-> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) ) )
13 fveq2 6191 . . 3  |-  ( v  =  A  ->  ( F `  v )  =  ( F `  A ) )
14 suceq 5790 . . . 4  |-  ( v  =  A  ->  suc  v  =  suc  A )
1514fveq2d 6195 . . 3  |-  ( v  =  A  ->  ( F `  suc  v )  =  ( F `  suc  A ) )
1613, 15sseq12d 3634 . 2  |-  ( v  =  A  ->  (
( F `  v
)  C_  ( F `  suc  v )  <->  ( F `  A )  C_  ( F `  suc  A ) ) )
17 inf3lem.1 . . . 4  |-  G  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
18 inf3lem.2 . . . 4  |-  F  =  ( rec ( G ,  (/) )  |`  om )
19 inf3lem.3 . . . 4  |-  A  e. 
_V
2017, 18, 19, 19inf3lemb 8522 . . 3  |-  ( F `
 (/) )  =  (/)
21 0ss 3972 . . 3  |-  (/)  C_  ( F `  suc  (/) )
2220, 21eqsstri 3635 . 2  |-  ( F `
 (/) )  C_  ( F `  suc  (/) )
23 sstr2 3610 . . . . . . . 8  |-  ( ( v  i^i  x ) 
C_  ( F `  u )  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( v  i^i  x
)  C_  ( F `  suc  u ) ) )
2423com12 32 . . . . . . 7  |-  ( ( F `  u ) 
C_  ( F `  suc  u )  ->  (
( v  i^i  x
)  C_  ( F `  u )  ->  (
v  i^i  x )  C_  ( F `  suc  u ) ) )
2524anim2d 589 . . . . . 6  |-  ( ( F `  u ) 
C_  ( F `  suc  u )  ->  (
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) )  -> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) )
26 vex 3203 . . . . . . . . . 10  |-  u  e. 
_V
2717, 18, 26, 19inf3lemc 8523 . . . . . . . . 9  |-  ( u  e.  om  ->  ( F `  suc  u )  =  ( G `  ( F `  u ) ) )
2827eleq2d 2687 . . . . . . . 8  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  u )  <->  v  e.  ( G `  ( F `  u ) ) ) )
29 vex 3203 . . . . . . . . 9  |-  v  e. 
_V
30 fvex 6201 . . . . . . . . 9  |-  ( F `
 u )  e. 
_V
3117, 18, 29, 30inf3lema 8521 . . . . . . . 8  |-  ( v  e.  ( G `  ( F `  u ) )  <->  ( v  e.  x  /\  ( v  i^i  x )  C_  ( F `  u ) ) )
3228, 31syl6bb 276 . . . . . . 7  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  u )  <->  ( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) ) ) )
33 peano2b 7081 . . . . . . . . . 10  |-  ( u  e.  om  <->  suc  u  e. 
om )
3426sucex 7011 . . . . . . . . . . 11  |-  suc  u  e.  _V
3517, 18, 34, 19inf3lemc 8523 . . . . . . . . . 10  |-  ( suc  u  e.  om  ->  ( F `  suc  suc  u )  =  ( G `  ( F `
 suc  u )
) )
3633, 35sylbi 207 . . . . . . . . 9  |-  ( u  e.  om  ->  ( F `  suc  suc  u
)  =  ( G `
 ( F `  suc  u ) ) )
3736eleq2d 2687 . . . . . . . 8  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  suc  u )  <-> 
v  e.  ( G `
 ( F `  suc  u ) ) ) )
38 fvex 6201 . . . . . . . . 9  |-  ( F `
 suc  u )  e.  _V
3917, 18, 29, 38inf3lema 8521 . . . . . . . 8  |-  ( v  e.  ( G `  ( F `  suc  u
) )  <->  ( v  e.  x  /\  (
v  i^i  x )  C_  ( F `  suc  u ) ) )
4037, 39syl6bb 276 . . . . . . 7  |-  ( u  e.  om  ->  (
v  e.  ( F `
 suc  suc  u )  <-> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) )
4132, 40imbi12d 334 . . . . . 6  |-  ( u  e.  om  ->  (
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) )  <->  ( (
v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  u ) )  -> 
( v  e.  x  /\  ( v  i^i  x
)  C_  ( F `  suc  u ) ) ) ) )
4225, 41syl5ibr 236 . . . . 5  |-  ( u  e.  om  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) ) ) )
4342imp 445 . . . 4  |-  ( ( u  e.  om  /\  ( F `  u ) 
C_  ( F `  suc  u ) )  -> 
( v  e.  ( F `  suc  u
)  ->  v  e.  ( F `  suc  suc  u ) ) )
4443ssrdv 3609 . . 3  |-  ( ( u  e.  om  /\  ( F `  u ) 
C_  ( F `  suc  u ) )  -> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) )
4544ex 450 . 2  |-  ( u  e.  om  ->  (
( F `  u
)  C_  ( F `  suc  u )  -> 
( F `  suc  u )  C_  ( F `  suc  suc  u
) ) )
464, 8, 12, 16, 22, 45finds 7092 1  |-  ( A  e.  om  ->  ( F `  A )  C_  ( F `  suc  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915    |-> cmpt 4729    |` cres 5116   suc csuc 5725   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  inf3lem4  8528
  Copyright terms: Public domain W3C validator