| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rclexi | Structured version Visualization version Unicode version | ||
| Description: The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| Ref | Expression |
|---|---|
| rclexi.1 |
|
| Ref | Expression |
|---|---|
| rclexi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3776 |
. 2
| |
| 2 | dmun 5331 |
. . . . . . 7
| |
| 3 | dmresi 5457 |
. . . . . . . 8
| |
| 4 | 3 | uneq2i 3764 |
. . . . . . 7
|
| 5 | ssun1 3776 |
. . . . . . . 8
| |
| 6 | ssequn1 3783 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpbi 220 |
. . . . . . 7
|
| 8 | 2, 4, 7 | 3eqtri 2648 |
. . . . . 6
|
| 9 | rnun 5541 |
. . . . . . 7
| |
| 10 | rnresi 5479 |
. . . . . . . 8
| |
| 11 | 10 | uneq2i 3764 |
. . . . . . 7
|
| 12 | ssun2 3777 |
. . . . . . . 8
| |
| 13 | ssequn1 3783 |
. . . . . . . 8
| |
| 14 | 12, 13 | mpbi 220 |
. . . . . . 7
|
| 15 | 9, 11, 14 | 3eqtri 2648 |
. . . . . 6
|
| 16 | 8, 15 | uneq12i 3765 |
. . . . 5
|
| 17 | unidm 3756 |
. . . . 5
| |
| 18 | 16, 17 | eqtri 2644 |
. . . 4
|
| 19 | 18 | reseq2i 5393 |
. . 3
|
| 20 | ssun2 3777 |
. . 3
| |
| 21 | 19, 20 | eqsstri 3635 |
. 2
|
| 22 | rclexi.1 |
. . . . . 6
| |
| 23 | 22 | elexi 3213 |
. . . . 5
|
| 24 | dmexg 7097 |
. . . . . . . 8
| |
| 25 | rnexg 7098 |
. . . . . . . 8
| |
| 26 | unexg 6959 |
. . . . . . . 8
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | 27 | resiexd 6480 |
. . . . . 6
|
| 29 | 22, 28 | ax-mp 5 |
. . . . 5
|
| 30 | 23, 29 | unex 6956 |
. . . 4
|
| 31 | dmeq 5324 |
. . . . . . . 8
| |
| 32 | rneq 5351 |
. . . . . . . 8
| |
| 33 | 31, 32 | uneq12d 3768 |
. . . . . . 7
|
| 34 | 33 | reseq2d 5396 |
. . . . . 6
|
| 35 | id 22 |
. . . . . 6
| |
| 36 | 34, 35 | sseq12d 3634 |
. . . . 5
|
| 37 | 36 | cleq2lem 37914 |
. . . 4
|
| 38 | 30, 37 | spcev 3300 |
. . 3
|
| 39 | intexab 4822 |
. . 3
| |
| 40 | 38, 39 | sylib 208 |
. 2
|
| 41 | 1, 21, 40 | mp2an 708 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |