Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclexi Structured version   Visualization version   Unicode version

Theorem trclexi 37927
Description: The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
trclexi.1  |-  A  e.  V
Assertion
Ref Expression
trclexi  |-  |^| { x  |  ( A  C_  x  /\  ( x  o.  x )  C_  x
) }  e.  _V
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem trclexi
StepHypRef Expression
1 ssun1 3776 . 2  |-  A  C_  ( A  u.  ( dom  A  X.  ran  A
) )
2 coundir 5637 . . . 4  |-  ( ( A  u.  ( dom 
A  X.  ran  A
) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  =  ( ( A  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  u.  (
( dom  A  X.  ran  A )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) ) )
3 coundi 5636 . . . . . 6  |-  ( A  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  =  ( ( A  o.  A )  u.  ( A  o.  ( dom  A  X.  ran  A ) ) )
4 cossxp 5658 . . . . . . 7  |-  ( A  o.  A )  C_  ( dom  A  X.  ran  A )
5 cossxp 5658 . . . . . . . 8  |-  ( A  o.  ( dom  A  X.  ran  A ) ) 
C_  ( dom  ( dom  A  X.  ran  A
)  X.  ran  A
)
6 dmxpss 5565 . . . . . . . . 9  |-  dom  ( dom  A  X.  ran  A
)  C_  dom  A
7 xpss1 5228 . . . . . . . . 9  |-  ( dom  ( dom  A  X.  ran  A )  C_  dom  A  ->  ( dom  ( dom  A  X.  ran  A
)  X.  ran  A
)  C_  ( dom  A  X.  ran  A ) )
86, 7ax-mp 5 . . . . . . . 8  |-  ( dom  ( dom  A  X.  ran  A )  X.  ran  A )  C_  ( dom  A  X.  ran  A )
95, 8sstri 3612 . . . . . . 7  |-  ( A  o.  ( dom  A  X.  ran  A ) ) 
C_  ( dom  A  X.  ran  A )
104, 9unssi 3788 . . . . . 6  |-  ( ( A  o.  A )  u.  ( A  o.  ( dom  A  X.  ran  A ) ) )  C_  ( dom  A  X.  ran  A )
113, 10eqsstri 3635 . . . . 5  |-  ( A  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( dom  A  X.  ran  A )
12 coundi 5636 . . . . . 6  |-  ( ( dom  A  X.  ran  A )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  =  ( ( ( dom  A  X.  ran  A )  o.  A
)  u.  ( ( dom  A  X.  ran  A )  o.  ( dom 
A  X.  ran  A
) ) )
13 cossxp 5658 . . . . . . . 8  |-  ( ( dom  A  X.  ran  A )  o.  A ) 
C_  ( dom  A  X.  ran  ( dom  A  X.  ran  A ) )
14 rnxpss 5566 . . . . . . . . 9  |-  ran  ( dom  A  X.  ran  A
)  C_  ran  A
15 xpss2 5229 . . . . . . . . 9  |-  ( ran  ( dom  A  X.  ran  A )  C_  ran  A  ->  ( dom  A  X.  ran  ( dom  A  X.  ran  A ) ) 
C_  ( dom  A  X.  ran  A ) )
1614, 15ax-mp 5 . . . . . . . 8  |-  ( dom 
A  X.  ran  ( dom  A  X.  ran  A
) )  C_  ( dom  A  X.  ran  A
)
1713, 16sstri 3612 . . . . . . 7  |-  ( ( dom  A  X.  ran  A )  o.  A ) 
C_  ( dom  A  X.  ran  A )
18 xptrrel 13719 . . . . . . 7  |-  ( ( dom  A  X.  ran  A )  o.  ( dom 
A  X.  ran  A
) )  C_  ( dom  A  X.  ran  A
)
1917, 18unssi 3788 . . . . . 6  |-  ( ( ( dom  A  X.  ran  A )  o.  A
)  u.  ( ( dom  A  X.  ran  A )  o.  ( dom 
A  X.  ran  A
) ) )  C_  ( dom  A  X.  ran  A )
2012, 19eqsstri 3635 . . . . 5  |-  ( ( dom  A  X.  ran  A )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( dom  A  X.  ran  A )
2111, 20unssi 3788 . . . 4  |-  ( ( A  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  u.  ( ( dom  A  X.  ran  A )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) ) )  C_  ( dom  A  X.  ran  A
)
222, 21eqsstri 3635 . . 3  |-  ( ( A  u.  ( dom 
A  X.  ran  A
) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( dom  A  X.  ran  A
)
23 ssun2 3777 . . 3  |-  ( dom 
A  X.  ran  A
)  C_  ( A  u.  ( dom  A  X.  ran  A ) )
2422, 23sstri 3612 . 2  |-  ( ( A  u.  ( dom 
A  X.  ran  A
) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( A  u.  ( dom  A  X.  ran  A ) )
25 trclexi.1 . . . . . 6  |-  A  e.  V
2625elexi 3213 . . . . 5  |-  A  e. 
_V
2726dmex 7099 . . . . . 6  |-  dom  A  e.  _V
2826rnex 7100 . . . . . 6  |-  ran  A  e.  _V
2927, 28xpex 6962 . . . . 5  |-  ( dom 
A  X.  ran  A
)  e.  _V
3026, 29unex 6956 . . . 4  |-  ( A  u.  ( dom  A  X.  ran  A ) )  e.  _V
31 trcleq2lem 13730 . . . 4  |-  ( x  =  ( A  u.  ( dom  A  X.  ran  A ) )  ->  (
( A  C_  x  /\  ( x  o.  x
)  C_  x )  <->  ( A  C_  ( A  u.  ( dom  A  X.  ran  A ) )  /\  ( ( A  u.  ( dom  A  X.  ran  A ) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( A  u.  ( dom  A  X.  ran  A ) ) ) ) )
3230, 31spcev 3300 . . 3  |-  ( ( A  C_  ( A  u.  ( dom  A  X.  ran  A ) )  /\  ( ( A  u.  ( dom  A  X.  ran  A ) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( A  u.  ( dom  A  X.  ran  A ) ) )  ->  E. x
( A  C_  x  /\  ( x  o.  x
)  C_  x )
)
33 intexab 4822 . . 3  |-  ( E. x ( A  C_  x  /\  ( x  o.  x )  C_  x
)  <->  |^| { x  |  ( A  C_  x  /\  ( x  o.  x
)  C_  x ) }  e.  _V )
3432, 33sylib 208 . 2  |-  ( ( A  C_  ( A  u.  ( dom  A  X.  ran  A ) )  /\  ( ( A  u.  ( dom  A  X.  ran  A ) )  o.  ( A  u.  ( dom  A  X.  ran  A ) ) )  C_  ( A  u.  ( dom  A  X.  ran  A ) ) )  ->  |^| { x  |  ( A  C_  x  /\  ( x  o.  x )  C_  x
) }  e.  _V )
351, 24, 34mp2an 708 1  |-  |^| { x  |  ( A  C_  x  /\  ( x  o.  x )  C_  x
) }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200    u. cun 3572    C_ wss 3574   |^|cint 4475    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  dfrtrcl5  37936
  Copyright terms: Public domain W3C validator