Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimag Structured version   Visualization version   Unicode version

Theorem intimag 37948
Description: Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimag  |-  ( A. y ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a )  ->  ( |^| A " B )  =  |^| { x  |  E. a  e.  A  x  =  ( a " B ) } )
Distinct variable groups:    x, a,
y, A    B, a, x, y    A, b    B, b, a, y, x

Proof of Theorem intimag
StepHypRef Expression
1 r19.12 3063 . . . . 5  |-  ( E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a  ->  A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a )
2 id 22 . . . . 5  |-  ( ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a
)  ->  ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a ) )
31, 2impbid2 216 . . . 4  |-  ( ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a
)  ->  ( E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a  <->  A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a ) )
4 elimaint 37940 . . . 4  |-  ( y  e.  ( |^| A " B )  <->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a
)
5 elintima 37945 . . . 4  |-  ( y  e.  |^| { x  |  E. a  e.  A  x  =  ( a " B ) }  <->  A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a
)
63, 4, 53bitr4g 303 . . 3  |-  ( ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a
)  ->  ( y  e.  ( |^| A " B )  <->  y  e.  |^|
{ x  |  E. a  e.  A  x  =  ( a " B ) } ) )
76alimi 1739 . 2  |-  ( A. y ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a )  ->  A. y
( y  e.  (
|^| A " B
)  <->  y  e.  |^| { x  |  E. a  e.  A  x  =  ( a " B
) } ) )
8 dfcleq 2616 . 2  |-  ( (
|^| A " B
)  =  |^| { x  |  E. a  e.  A  x  =  ( a " B ) }  <->  A. y
( y  e.  (
|^| A " B
)  <->  y  e.  |^| { x  |  E. a  e.  A  x  =  ( a " B
) } ) )
97, 8sylibr 224 1  |-  ( A. y ( A. a  e.  A  E. b  e.  B  <. b ,  y >.  e.  a  ->  E. b  e.  B  A. a  e.  A  <. b ,  y >.  e.  a )  ->  ( |^| A " B )  =  |^| { x  |  E. a  e.  A  x  =  ( a " B ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   <.cop 4183   |^|cint 4475   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  intimasn  37949
  Copyright terms: Public domain W3C validator